ﻻ يوجد ملخص باللغة العربية
We derive the effect of the Schrodinger--Newton equation, which can be considered as a non-relativistic limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-antimeson systems exhibit very unique properties, e.g. distinct masses due to strong and electroweak interactions. We find conceptually different physical scenarios due to lacking of a clear physical guiding principle which mass is the relevant one and due to the fact that it is not clear how the flavor wave-function relates to the spatial wave-function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrodinger equation in this manner strongly depends on the relation between the flavor wave-function and spatial wave-function and its particular shape. In opposition to the Continuous Spontaneous Localization collapse models we find a change in the oscillating behavior and not in the damping of the flavor oscillation.
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativisitic sy
We develop a quantum mechanical method of measuring the Newtonian constant of gravitation, G. In this method, an optomechanical system consisting of two cavities and two membrane resonators is used. The added source mass would induce the shifts of th
A unique signature of the modified Newtonian dynamics (MOND) paradigm is its peculiar behavior in the vicinity of the points where the total Newtonian acceleration exactly cancels. In the Solar System, these are the saddle points of the gravitational
C-theory provides a unified framework to study metric, metric-affine and more general theories of gravity. In the vacuum weak-field limit of these theories, the parameterized post-Newtonian (PPN) parameters $beta$ and $gamma$ can differ from their ge
Based on a fact that complex Clifford algebras of even dimension are isomorphic to the matrix ones, we consider bundles in Clifford algebras whose structure group is a general linear group acting on a Clifford algebra by left multiplications, but not