ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-range magnetic correlations in the highly-correlated electron compound CeCu$_{4}Ga

249   0   0.0 ( 0 )
 نشر من قبل Benjamin Ueland
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental results for the heavy-electron compound CeCu$_{4}$Ga which show that it possesses short-range magnetic correlations down to a temperature of $T = 0.1$ K. Our neutron scattering data show no evidence of long-range magnetic order occurring despite a peak in the specific heat at $T^{*} =1.2$ K. Rather, magnetic diffuse scattering occurs which corresponds to short-range magnetic correlations occurring across two unit cells. The specific heat remains large as $Tsim0$ K resulting in a Sommerfeld coefficient of $gamma_{0} = 1.44(2)$ J/mol-K$^{2}$, and, below $T^{*}$, the resistivity follows $T^{2}$ behavior and the ac magnetic susceptibility becomes temperature independent. A magnetic peak centered at an energy transfer of $E_{rm{c}}=0.24(1)$ meV is seen in inelastic neutron scattering data which shifts to higher energies and broadens under a magnetic field. We discuss the coexistence of large specific heat, magnetic fluctuations, and short-range magnetic correlations at low temperatures and compare our results to those for materials possessing spin-liquid behavior.

قيم البحث

اقرأ أيضاً

We present a single crystal neutron diffraction study of the magnetic short-range correlations in Tb$_5$Ge$_4$ which orders antiferromagnetically below the Neel temperature $T_N$ $approx$ 92 K. Strong diffuse scattering arising from magnetic short-ra nge correlations was observed in wide temperature ranges both below and above $T_N$. The antiferromagnetic ordering in Tb$_5$Ge$_4$ can be described as strongly coupled ferromagnetic block layers in the $ac$-plane that stack along the b-axis with weak antiferromagnetic inter-layer coupling. Diffuse scattering was observed along both $a^*$ and $b^*$ directions indicating three-dimensional short-range correlations. Moreover, the $q$-dependence of the diffuse scattering is Squared-Lorentzian in form suggesting a strongly clustered magnetic state that may be related to the proposed Griffiths-like phase in Gd$_5$Ge$_4$.
A prototypical quasi-2D metallic compound, 1T-TaS_2 has been extensively studied due to an intricate interplay between a Mott-insulating ground state and a charge density-wave (CDW) order. In the low-temperature phase, 12 out of 13 Ta_{4+} 5textit{d} -electrons form molecular orbitals in hexagonal star-of-David patterns, leaving one 5textit{d}-electron with textit{S} = 1/2 spin free. This orphan quantum spin with a large spin-orbit interaction is expected to form a highly correlated phase of its own. And it is most likely that they will form some kind of a short-range order out of a strongly spin-orbit coupled Hilbert space. In order to investigate the low-temperature magnetic properties, we performed a series of measurements including neutron scattering and muon experiments. The obtained data clearly indicate the presence of the short-ranged phase and put the upper bound on ~ 0.4 textit{mu}_B for the size of the magnetic moment, consistent with the orphan-spin scenario.
The magnetic ground state of the hyper-kagome lattice in Na4Ir3O8 is explored via combined bulk magnetization, muon spin relaxation, and neutron scattering measurements. A short-range, frozen, state comprised of quasi-static moments develops below a characteristic temperature of T_F=6 K, revealing an inhomogeneous distribution of spins occupying the entirety of the sample volume. Quasi-static, short-range, spin correlations persist until at least 20 mK and differ substantially from the nominally dynamic response of a quantum spin liquid. Our data demonstrate that an inhomogeneous magnetic ground state arises in Na4Ir3O8 driven either by disorder inherent to the creation of the hyper-kagome lattice itself or stabilized via quantum fluctuations.
Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matt er as disparate as high-temperature superconductivity and charge- or magnetic-order. However, a comprehensive understanding of fundamental electronic properties of quantum materials is often complicated by the appearance of an enigmatic partial suppression of low-energy electronic states, known as the pseudogap. Here we take advantage of ultrafast angle-resolved photoemission spectroscopy to unveil the temperature evolution of the low-energy density of states in the electron-doped cuprate Nd$_{text{2-x}}$Ce$_{text{x}}$CuO$_{text{4}}$, an emblematic system where the pseudogap intertwines with magnetic degrees of freedom. By photoexciting the electronic system across the pseudogap onset temperature T*, we report the direct relation between the momentum-resolved pseudogap spectral features and the spin-correlation length with an unprecedented sensitivity. This transient approach, corroborated by mean field model calculations, allows us to establish the pseudogap in electron-doped cuprates as a precursor to the incipient antiferromagnetic order even when long-range antiferromagnetic correlations are not established, as in the case of optimal doping.
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$, which belong to a class of recently discovered pyrochlore compounds based o n transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 AA, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا