ترغب بنشر مسار تعليمي؟ اضغط هنا

Localised Wannier orbital basis for the Mott insulators GaV4S8 and GaTa4Se8

194   0   0.0 ( 0 )
 نشر من قبل Alberto Camjayi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the electronic properties of GaV4S8 (GVS) and GaTaSe8 (GTS), two distant members within the large family of chalcogenides AM4X8, with A={Ga, Ge}, M={V, Nb, Ta, Mo} and X={S, Se}. While all these compounds are Mott insulators, their ground state show many types of magnetic order, with GVS being ferromagnetic and GTS non-magnetic. Based on their bandstructures, calculated with Density Functional Theory methods, we compute an effective tight binding Hamiltonian in a localised Wannier basis set, for each one of the two compounds. The localised orbitals provide a very accurate representation of the bandstructure, with hopping amplitudes that rapidly decrease with distance. We estimate the super-exchange interactions and show that the Coulomb repulsion with the Hunds coupling may account the for the different ground states observed in GVS and GTS. Our localised Wannier basis provides a starting point for realistic Dynamical Mean Field Theory studies of strong correlation effects in this family compounds.



قيم البحث

اقرأ أيضاً

We present the results of the magnetic and specific heat measurements on V4 tetrahedral-cluster compound GaV4S8 between 2 to 300K. We find two transitions related to a structural change at 42K followed by ferromagnetic order at 12K on cooling. Remark ably similar properties were previously reported for the cluster compounds of Mo4. These compounds show an extremely high density of low energy excitations in their electronic properties. We explain this behavior in a cluster compound as due to the reduction of coulomb repulsion among electrons that occupy highly degenerate orbits of different clusters.
We develop a strong coupling approach towards quantum magnetism in Mott insulators for Wannier obstructed bands. Despite the lack of Wannier orbitals, electrons can still singly occupy a set of exponentially-localized but nonorthogonal orbitals to mi nimize the repulsive interaction energy. We develop a systematic method to establish an effective spin model from the electron Hamiltonian using a diagrammatic approach. The nonorthogonality of the Mott basis gives rise to multiple new channels of spin-exchange (or permutation) interactions beyond Hartree-Fock and superexchange terms. We apply this approach to a Kagome lattice model of interacting electrons in Wannier obstructed bands (including both Chern bands and fragile topological bands). Due to the orbital nonorthogonality, as parameterized by the nearest neighbor orbital overlap $g$, this model exhibits stable ferromagnetism up to a finite bandwidth $Wsim U g$, where $U$ is the interaction strength. This provides an explanation for the experimentally observed robust ferromagnetism in Wannier obstructed bands. The effective spin model constructed through our approach also opens up the possibility for frustrated quantum magnetism around the ferromagnet-antiferromagnet crossover in Wannier obstructed bands.
213 - Giniyat Khaliullin 2005
Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO$_3$, is contrasted to the quantum behavior of orbitals in frustr ated superexchange models as realised in pseudocubic titanites ATiO$_3$ and vanadates AVO$_3$. In YVO$_3$, the lattice and superexchange effects strongly compete -- this explains the extreme sensitivity of magnetic states to temperature and doping. Lifting the $t_{2g}$ orbital degeneracy by a relativistic spin-orbital coupling is considered on example of the layered cobaltates. We find that the spin-orbital mixing of low-energy states leads to unusual magnetic correlations in a triangular lattice of the CoO$_2$ parent compound. Finally, the magnetism of sodium-rich compounds Na$_{1-x}$CoO$_2$ is discussed in terms of a spin/orbital polaronic liquid.
Motivated by experimental and theoretical interest in realizing multipolar orders in $d$-orbital materials, we discuss the quantum magnetism of $J!=!2$ ions which can be realized in spin-orbit coupled oxides with $5d^2$ transition metal ions. Based o n the crystal field environment, we argue for a splitting of the $J!=!2$ multiplet, leading to a low lying non-Kramers doublet which hosts quadrupolar and octupolar moments. We discuss a microscopic mechanism whereby the combined perturbative effects of orbital repulsion and antiferromagnetic Heisenberg spin interactions leads to ferro-octupolar coupling between neighboring sites, and stabilizes ferro-octupolar order for a face-centered cubic lattice. This same mechanism is also shown to disfavor quadrupolar ordering. We show that studying crystal field levels via Raman scattering in a magnetic field provides a probe of octupolar order. We study spin dynamics in the ferro-octupolar state using a slave-boson approach, uncovering a gapped and dispersive magnetic exciton. For sufficiently strong magnetic exchange, the dispersive exciton can condense, leading to conventional type-I antiferromagnetic (AFM) order which can preempt octupolar order. Our proposal for ferrooctupolar order, with specific results in the context of a model Hamiltonian, provides a comprehensive understanding of thermodynamics, $mu$SR, X-ray diffraction, and inelastic neutron scattering measurements on a range of cubic $5d^2$ double perovskite materials including Ba$_2$ZnOsO$_6$, Ba$_2$CaOsO$_6$, and Ba$_2$MgOsO$_6$. Our proposal for exciton condensation leading to type-I AFM order may be relevant to materials such as Sr$_2$MgOsO$_6$.
130 - Eva Zurek , Ove Jepsen , 2005
Within this paper we outline a method able to generate truly minimal basis sets which describe either a group of bands, a band, or even just the occupied part of a band accurately. These basis sets are the so-called NMTOs, Muffin Tin Orbitals of orde r N. For an isolated set of bands, symmetrical orthonormalization of the NMTOs yields a set of Wannier functions which are atom-centered and localized by construction. They are not necessarily maximally localized, but may be transformed into those Wannier functions. For bands which overlap others, Wannier-like functions can be generated. It is shown that NMTOs give a chemical understanding of an extended system. In particular, orbitals for the pi and sigma bands in an insulator, boron nitride, and a semi-metal, graphite, will be considered. In addition, we illustrate that it is possible to obtain Wannier-like functions for only the occupied states in a metallic system by generating NMTOs for cesium. Finally, we visualize the pressure-induced s to d transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا