ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion in action: phase space coherence of stellar debris and globular clusters in Andromedas South-West Cloud

48   0   0.0 ( 0 )
 نشر من قبل Dougal Mackey
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A central tenet of the current cosmological paradigm is that galaxies grow over time through the accretion of smaller systems. Here, we present new kinematic measurements near the centre of one of the densest pronounced substructures, the South-West Cloud, in the outer halo of our nearest giant neighbour, the Andromeda galaxy. These observations reveal that the kinematic properties of this region of the South-West Cloud are consistent with those of PA-8, a globular cluster previously shown to be co-spatial with the stellar substructure. In this sense the situation is reminiscent of the handful of globular clusters that sit near the heart of the Sagittarius dwarf galaxy, a system that is currently being accreted into the Milky Way, confirming that accretion deposits not only stars but also globular clusters into the halos of large galaxies.

قيم البحث

اقرأ أيضاً

In the present work we analyzed seven globular clusters selected from their location in the Galactic bulge and with metallicity values in the range $-1.30lesssimrm{[Fe/H]}lesssim-0.50$. The aim of this work is first to derive cluster ages assuming si ngle stellar populations, and secondly, to identify the stars from first (1G) and second generations (2G) from the main sequence, subgiant and red giant branches, and to derive their age differences. Based on a combination of UV and optical filters used in this project, we apply the Gaussian mixture models to distinguish the multiple stellar populations. Applying statistical isochrone fitting, we derive self-consistent ages, distances, metallicities, and reddening values for the sample clusters. An average of $12.3pm0.4$ Gyr was obtained both using Dartmouth and BaSTI (accounting atomic diffusion effects) isochrones, without a clear distinction between the moderately metal-poor and the more metal-rich bulge clusters, except for NGC 6717 and the inner halo NGC 6362 with $sim 13.5$ Gyr. We derived a weighted mean age difference between the multiple populations hosted by each globular cluster of $41pm170$ Myr adopting canonical He abundances; whereas for higher He in 2G stars, this difference reduces to $17pm170$ Myr, but with individual uncertainties of $500$ Myr.
Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses ~10 MSun, BHs are ~20 times more m assive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well-mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH--BH merger rate from globular clusters could be comparable to the rate in the field.
Evidence that the multiple populations (MPs) are common properties of globular clusters (GCs) is accumulated over the past decades from clusters in the Milky Way and in its satellites. This finding has revived GC research, and suggested that their fo rmation at high redshift must have been a much-more complex phenomenon than imagined before. However, most information on MPs is limited to nearby GCs. The main limitation is that most studies on MPs rely on resolved stars, facing a major challenge to investigate the MP phenomenon in distant galaxies. Here we search for integrated colors of old GCs that are sensitive to the multiple-population phenomenon. To do this, we exploit integrated magnitudes of simulated GCs with MPs, and multi-band Hubble Space Telescope photometry of 56 Galactic GCs, where MPs are widely studied, and characterized as part of the UV Legacy Survey of Galactic GCs. We find that both integrated $C_{rm F275W,F336W,F438W}$ and $m_{rm F275W}-m_{rm F814W}$ colors strongly correlate with the iron abundance of the host GC. In second order, the pseudo two-color diagram built with these integrated colors is sensitive to the MP phenomenon. In particular, once removed the dependence from cluster metallicity, the color residuals depend on the maximum internal helium variation within GCs and on the fraction of second-generation stars. This diagram, which we define here for Galactic GCs, has the potential of detecting and characterizing MPs from integrated photometry of old GCs, thus providing the possibility to extend their investigation outside the Local Group.
Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from $sim 20 - 100, M_odot$. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. We describe numerical results for 42 models, covering a range of realistic initial conditions, including up to $1.6times10^6$ stars. In almost all models we find that significant numbers of black holes (up to $sim10^3$) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer mass segregation instability) is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.
We show that hard encounters in the central regions of globular clusters embedded in dark matter (DM) haloes necessarily lead to the formation of gravitationally-bound stellar envelopes that extend far beyond the nominal tidal radius of the system. U sing statistical arguments and numerical techniques we derive the equilibrium distribution function of stars ejected from the centre of a non-divergent spherical potential. Independently of the velocity distribution with which stars are ejected, GC envelopes have density profiles that approach asymptotically $rhosim r^{-4}$ at large distances and become isothermal towards the centre. Adding a DM halo component leaves two clear-cut observational signatures: (i) a flattening, or slightly increase of the projected velocity dispersion profile at large distances, and (ii) an outer surface density profile that is systematically shallower than in models with no dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا