ﻻ يوجد ملخص باللغة العربية
The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of users quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.
Large-scale distributed-antenna system (L-DAS) with very large number of distributed antennas, possibly up to a few hundred antennas, is considered. A few major issues of the L-DAS, such as high latency, energy consumption, computational complexity,
Large-scale antenna (LSA) has gained a lot of attention due to its great potential to significantly improve system throughput. In most existing works on LSA systems, orthogonal frequency division multiplexing (OFDM) is presumed to deal with frequency
Large-scale antenna (LSA) or massive multiple-input multiple-output (MIMO) has gained a lot of attention due to its potential to significantly improve system throughput. As a natural evolution from traditional MIMO-orthogonal frequency division multi
In this work, we present a switched relaying framework for multiple-input multiple-output (MIMO) relay systems where a source node may transmit directly to a destination node or aided by relays. We also investigate relay selection techniques for the
In this paper, energy efficient resource allocation is considered for an uplink hybrid system, where non-orthogonal multiple access (NOMA) is integrated into orthogonal multiple access (OMA). To ensure the quality of service for the users, a minimum