ﻻ يوجد ملخص باللغة العربية
Two populations of twisted magnetic field tubes, or flux ropes (hereafter, FRs), are detected by in situ measurements in the solar wind. While small FRs are crossed by the observing spacecraft within few hours, with a radius typically less than 0.1AU, larger FRs, or magnetic clouds (hereafter, MCs), have durations of about half a day. The main aim of this study is to compare the properties of both populations of FRs observed by the Wind spacecraft at 1 AU. To do so, we use standard correlation techniques for the FR parameters, as well as histograms and more refined statistical methods. Although several properties seem at first different for small FRs and MCs, we show that they are actually governed by the same propagation physics. For example, we observe no in situ signatures of expansion for small FRs, contrary to MCs. We demonstrate that this result is in fact expected: small FRs expand similarly to MCs, as a consequence of a total pressure balance with the surrounding medium, but the expansion signature is well hidden by velocity fluctuations. Next, we find that the FR radius, velocity and magnetic field strength are all positively correlated, with correlation factors than can reach a value >0.5. This result indicates a remnant trace of the FR ejection process from the corona. We also find a larger FR radius at the apex than at the legs (up to three times larger at the apex), for FR observed at 1 AU. Finally, assuming that the detected FRs have a large-scale configuration in the heliosphere, we derived the mean axis shape from the probability distribution of the axis orientation. We therefore interpret the small FR and MC properties in a common framework of FRs interacting with the solar wind, and we disentangle the physics present behind their common and different features.
Flux ropes are twisted magnetic structures, which can be detected by in situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope population. As such, are there different population
Magnetic flux rope, formed by the helical magnetic field lines, can sometimes remain its shape while carrying significant plasma flow that is aligned with the local magnetic field. We report the existence of such structures and static flux ropes by a
The slow solar wind exhibits strong variability on timescales from minutes to days, likely related to magnetic reconnection processes in the extended solar corona. Higginson2017b presented a numerical magnetohydrodynamic simulation which showed inter
We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of 0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe. We extend our previous magnetic helicity based t
This work extends recent efforts on the force-free modeling of large flux rope-type structures (magnetic clouds, MCs) to much smaller spatial scales. We first select small flux ropes (SFRs) by eye whose duration is unambiguous and which were observed