ترغب بنشر مسار تعليمي؟ اضغط هنا

Voids in Modified Gravity Reloaded: Eulerian Void Assignment

255   0   0.0 ( 0 )
 نشر من قبل Joseph Clampitt
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the excursion set approach to calculate void abundances in chameleon-type modified gravity theories, which was previously studied by Clampitt, Cai and Li (2013). We focus on properly accounting for the void-in-cloud effect, i.e., the growth of those voids sitting in over-dense regions may be restricted by the evolution of their surroundings. This effect may change the distribution function of voids hence affect predictions on the differences between modified gravity and GR. We show that the thin-shell approximation usually used to calculate the fifth force is qualitatively good but quantitatively inaccurate. Therefore, it is necessary to numerically solve the fifth force in both over-dense and under-dense regions. We then generalise the Eulerian void assignment method of Paranjape, Lam and Sheth (2012) to our modified gravity model. We implement this method in our Monte Carlo simulations and compare its results with the original Lagrangian methods. We find that the abundances of small voids are significantly reduced in both modified gravity and GR due to the restriction of environments. However, the change in void abundances for the range of void radii of interest for both models is similar. Therefore, the difference between models remains similar to the results from the Lagrangian method, especially if correlated steps of the random walks are used. As Clampitt, Cai and Li (2013), we find that the void abundance is much more sensitive to modified gravity than halo abundances. Our method can then be a faster alternative to N-body simulations for studying the qualitative behaviour of a broad class of theories. We also discuss the limitations and other practical issues associated with its applications.



قيم البحث

اقرأ أيضاً

Cosmic voids are progressively emerging as a new viable cosmological probe. Their abundance and density profiles are sensitive to modifications of gravity, as well as to dark energy and neutrinos. The main goal of this work is to investigate the poss ibility of exploiting cosmic void statistics to disentangle the degeneracies resulting from a proper combination of $f(R)$ modified gravity and neutrino mass. We use N-body simulations to analyse the density profiles and size function of voids traced by both dark matter particles and haloes. We find clear evidence of the enhancement of gravity in $f(R)$ cosmologies in the void density profiles at $z=1$. However, these effects can be almost completely overridden by the presence of massive neutrinos because of their thermal free-streaming. Despite the limited volume of the analysed simulations does not allow us to achieve a statistically relevant abundance of voids larger than $40 mathrm{Mpc}/h$, we find that the void size function at high redshifts and for large voids is potentially an effective probe to disentangle these degenerate cosmological models, which is key in the prospective of the upcoming wide field redshift surveys.
We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy sample from the Sloan Digital Sky Survey. We take into account the classification of voids into two types that resemble different evolutionary modes: those wit h a rising integrated density profile (void-in-void mode, or R-type) and voids with shells (void-in-cloud mode, or S-type). The results show that voids of the same type have stronger clustering than the full sample. We use the correlation analysis to define void clumps, associations with at least two voids separated by a distance of at most the mean void separation. In order to study the spatial configuration of void clumps, we compute the minimal spanning tree and analyse their multiplicity, maximum length and elongation parameter. We further study the dynamics of the smaller sphere that encloses all the voids in each clump. Although the global densities of void clumps are different according to their member-void types, the bulk motions of these spheres are remarkably lower than those of randomly placed spheres with the same radii distribution. In addition, the coherence of pairwise void motions does not strongly depend on whether voids belong to the same clump. Void clumps are useful to analyse the large-scale flows around voids, since voids embedded in large underdense regions are mostly in the void-in-void regime, were the expansion of the larger region produces the separation of voids. Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the relative velocities of voids that are mostly approaching.
We investigate void properties in $f(R)$ models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki $f(R)$ modified gravity (MG) models, the halo number density profiles of v oids are not distinguishable from GR. In contrast, the same $f(R)$ voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the $f(R)$ model parameter amplitudes $|f_{R0}|=10^{-5}$ and $10^{-4}$ may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8$sigma$ for a volume of 1~(Gpc/$h$)$^3$. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguish $|f_{R0}|=10^{-6}$ from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles in $f(R)$ models are unique features that can be combined to break the degeneracy between $|f_{R0}|$ and $sigma_8$.
149 - Yan-Chuan Cai 2014
We explore voids in dark matter and halo fields from simulations of $Lambda$CDM and Hu-Sawicki $f(R)$ models. In $f(R)$ gravity, dark matter void abundances are greater than that of general relativity (GR). However, when using haloes to identify void s, the differences of void abundances become much smaller, but can still be told apart, in principle, at the 2, 6 and 14 $sigma$ level for the $f(R)$ model parameter amplitudes of $|f_{R0}|=10^{-6}$, $10^{-5}$ and $10^{-4}$. In contrast, the abundance of large voids found using haloes in $f(R)$ gravity is lower than in GR. The more efficient halo formation in underdense regions makes $f(R)$ voids less empty of haloes. This counter intuitive result suggests that voids are not necessarily emptier in $f(R)$ if one looks at galaxies in voids. Indeed, the halo number density profiles of voids are not distinguishable from GR. However, the same $f(R)$ voids are more empty of dark matter. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spec-$z$ and a photo-$z$ survey over the same sky is necessary. For a volume of 1~(Gpc/$h$)$^3$, neglecting the lensing shape noise, $|f_{R0}|=10^{-5}$ and $10^{-4}$ may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8$sigma$. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal, limiting the constraining power for $|f_{R0}|=10^{-6}$. The halo void abundance being smaller and the steepening of dark matter void profiles in $f(R)$ models are unique features that can be combined to break the degeneracy between $|f_{R0}|$ and $sigma_8$. The outflow of mass from void centers and velocity dispersions are greater in $f(R)$. Model differences in velocity profiles imply potential powerful constraints of the model in phase space and in redshift space.
Aims: We assess the sensitivity of void shapes to the nature of dark energy that was pointed out in recent studies. We investigate whether or not void shapes are useable as an observational probe in galaxy redshift surveys. We focus on the evolution of the mean void ellipticity and its underlying physical cause. Methods: We analyse the morphological properties of voids in five sets of cosmological N-body simulations, each with a different nature of dark energy. Comparing voids in the dark matter distribution to those in the halo population, we address the question of whether galaxy redshift surveys yield sufficiently accurate void morphologies. Voids are identified using the parameter free Watershed Void Finder. The effect of redshift distortions is investigated as well. Results: We confirm the statistically significant sensitivity of voids in the dark matter distribution. We identify the level of clustering as measured by sigma_8(z) as the main cause of differences in mean void shape <epsilon>. We find that in the halo and/or galaxy distribution it is practically unfeasible to distinguish at a statistically significant level between the various cosmologies due to the sparsity and spatial bias of the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا