ﻻ يوجد ملخص باللغة العربية
We examine the impact of the strength of the E_R = 127 keV, 26Al(p,g)27Si resonance on 26Al production in classical nova explosions and asymptotic giant branch (AGB) stars. Thermonuclear 26Al(p,g)27Si reaction rates are determined using different assumed strengths for this resonance and representative stellar model calculations of these astrophysical environments are performed using these different rates. Predicted 26Al yields in our models are not sensitive to differences in rates determined using zero and a commonly stated upper limit corresponding to wg_UL = 0.0042 micro-eV for this resonance strength. Yields of 26Al decrease by 6% and, more significantly, up to 30%, when a strength of 24 x wg_UL = 0.1 micro-eV is assumed in the adopted nova and AGB star models, respectively. Given that the value of wg_UL was deduced from a single, background-dominated 26Al(3He,d)27Si experiment where only upper limits on differential cross sections were determined, we encourage new experiments to confirm the strength of the 127 keV resonance.
The COMPTEL instrument performed the first mapping of the 1.809 MeV photons in the Galaxy, triggering considerable interest in determing the sources of interstellar 26Al. The predicted 26Al is too low compared to the observation, for a better underst
The $^{17}$O(p,$alpha$)$^{14}$N reaction plays a key role in various astrophysical scenarios, from asymptotic giant branch stars to classical novae. It affects the synthesis of rare isotopes such as $^{17}$O and $^{18}$F, which can provide constraint
Model predictions of the amount of the radioisotope 26Al produced in hydrogen-burning environments require reliable estimates of the thermonuclear rates for the 26gAl(p,{gamma})27Si and 26mAl(p,{gamma})27Si reactions. These rates depend upon the spec
Nuclear shell model predictions for the proton spectroscopic factor of the 1+, Ex = 5.68 MeV level in 26Si are about fifty times smaller than the value suggested by the measured (a,3He) cross section for the Ex = 5.69 MeV mirror level in 26Mg, assumi
In order to measure the energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, micro-TPC (Micro Time Projection Chambe