ﻻ يوجد ملخص باللغة العربية
During 2011 February 13 to 15, three Earth-directed CMEs launched in successively were recorded as limb CMEs by coronagraphs (COR) of STEREO. These CMEs provided an opportunity to study their geometrical and kinematic evolution from multiple vantage points. In this paper, we examine the differences in geometrical evolution of slow and fast speed CMEs during their propagation in the heliosphere. We also study their interaction and collision using STEREO/SECCHI COR and Heliospheric Imager (HI) observations. We have found evidence of interaction and collision between the CMEs of February 15 and 14 in COR2 and HI1 FOV, respectively, while the CME of February 14 caught the CME of February 13 in HI2 FOV. By estimating the true mass of these CMEs and using their pre and post-collision dynamics, the momentum and energy exchange between them during collision phase are studied. We classify the nature of observed collision between CME of February 14 and 15 as inelastic, reaching close to elastic regime. Relating imaging observations with the in situ measurements, we find that the CMEs move adjacent to each other after their collision in the heliosphere and are recognized as distinct structures in in situ observations by WIND spacecraft at L1. Our results highlight the significance of HI observations in studying CME-CME collision for the purpose of improved space weather forecasting.
Coronal Mass Ejections (CMEs) are large-scale eruptions from the Sun into interplanetary space. Despite being major space weather drivers, our knowledge of the CME properties in the inner heliosphere remains constrained by the scarcity of observation
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerf
Aims. The study of the morphology of coronal mass ejections (CMEs) is an auspicious approach to understanding how magnetic fields are structured within CMEs. Although earlier studies have suggested an asymmetry in the width of CMEs in orthogonal dire
So far most studies on the structure of coronal mass ejections (CMEs) are conducted through white-light coronagraphs, which demonstrate about one third of CMEs exhibit the typical three-part structure in the high corona (e.g., beyond 2 Rs), i.e., the
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) has been used to simulate the propagation of a CME