ﻻ يوجد ملخص باللغة العربية
We investigate the edge state of a two-dimensional topological insulator based on the Kane-Mele model. Using complex wave numbers of the Bloch wave function, we derive an analytical expression for the edge state localized near the edge of a semi-infinite honeycomb lattice with a straight edge. For the comparison of the edge type effects, two types of the edges are considered in this calculation; one is a zigzag edge and the other is an armchair edge. The complex wave numbers and the boundary condition give the analytic equations for the energies and the wave functions of the edge states. The numerical solutions of the equations reveal the intriguing spatial behaviors of the edge state. We define an edge-state width for analyzing the spatial variation of the edge-state wave function. Our results show that the edge-state width can be easily controlled by a couple of parameters such as the spin-orbit coupling and the sublattice potential. The parameter dependences of the edge-state width show substantial differences depending on the edge types. These demonstrate that, even if the edge states are protected by the topological property of the bulk, their detailed properties are still discriminated by their edges. This edge dependence can be crucial in manufacturing small-sized devices since the length scale of the edge state is highly subject to the edges.
The entanglement Chern number, the Chern number for the entanglement Hamiltonian, is used to charac- terize the Kane-Mele model, which is a typical model of the quantum spin Hall phase with the time reversal symmetry. We first obtain the global phase
We investigate the magnetic response in the quantum spin Hall phase of the layered Kane-Mele model with Hubbard interaction, and argue a condition to obtain the Meissner effect. The effect of Rashba spin orbit coupling is also discussed.
The description of interactions in strongly-correlated topological phases of matter remains a challenge. Here, we develop a stochastic functional approach for interacting topological insulators including both charge and spin channels. We find that th
We determine the phase diagram of the Kane-Mele model with a long-range Coulomb interaction using an exact quantum Monte Carlo method. Long-range interactions are expected to play a role in honeycomb materials because the vanishing density of states
We study free, capped and encapsulated bilayer jacutingaite Pt$_2$HgSe$_3$ from first principles. While the free standing bilayer is a large gap trivial insulator, we find that the encapsulated structure has a small trivial gap due to the competition