ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the EUV spectra of optically thick boundary layers of dwarf novae in outburst

140   0   0.0 ( 0 )
 نشر من قبل Valery Suleimanov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we compute detailed model spectra of recently published optically thick one-dimensional radial baundary layer (BL) models in cataclysmic variables and compare them with observed soft X-ray/extreme ultraviolet (EUV) spectra of dwarf novae in outburst. Every considered BL model is divided into a number of rings, and for each ring, a structure model along the vertical direction is computed using the stellar-atmosphere method. The ring spectra are then combined into a BL spectrum taking Doppler broadening and limb darkening into account. Two sets of model BL spectra are computed, the first of them consists of BL models with fixed white dwarf (WD) mass (1 M_sun) and various relative WD angular velocities (0.2, 0.4, 0.6 and 0.8 break-up velocities), while the other deals with a fixed relative angular velocity (0.8 break-up velocity) and various WD masses (0.8, 1, and 1.2 M_sun). The model spectra show broad absorption features because of blending of numerous absorption lines, and emission-like features at spectral regions with only a few strong absorption lines. The model spectra are very similar to observed soft X-ray/EUV spectra of SS Cyg and U Gem in outburst. The observed SS Cyg spectrum could be fitted by BL model spectra with WD masses 0.8 - 1 M_sun and relative angular velocities 0.6 - 0.8 break up velocities. These BL models also reproduce the observed ratio of BL luminosity and disk luminosity. The difference between the observed and the BL model spectra is similar to a hot optically thin plasma spectrum and could be associated with the spectrum of outflowing plasma with a mass loss rate compatible with the BL mass accretion rate. The suggested method of computing BL spectra seems very promising and can be applied to other BL models for comparison with EUV spectra of dwarf novae in outburst.



قيم البحث

اقرأ أيضاً

180 - S. N. Shore 2011
The nova T Pyx was observed with high resolution spectroscopy (R ~ 65000) spectroscopy, beginning 1 day after discovery of the outburst and continuing through the last visibility of the star at the end of May 2011. The interstellar absorption lines o f Na I, Ca II, CH, CH$^+$, and archival H I 21 cm emission line observations have been used to determine a kinematic distance. Interstellar diffuse absorption features have been used to determine the extinction independent of previous assumptions. Sample Fe-peak line profiles show the optical depth and radial velocity evolution of the discrete components. We propose a distance to T Pyx $geq$4.5kpc, with a strict lower limit of 3.5 kpc (the previously accepted distance). We derive an extinction, E(B-V)$approx0.5pm$0.1, that is higher than previous estimates. The first observation, Apr. 15, displayed He I, He II, C III, and N III emission lines and a maximum velocity on P Cyg profiles of the Balmer and He I lines of $approx$2500 km s$^{-1}$ characteristic of the fireball stage. These ions were undetectable in the second spectrum, Apr. 23, and we use the recombination time to estimate the mass of the ejecta, $10^{-5}f$M$_odot$ for a filling factor $f$. Numerous absorption line systems were detected on the Balmer, Fe-peak, Ca II, and Na I lines, mirrored in broader emission line components, that showed an accelerated displacement in velocity. We also show that the time sequence of these absorptions, which are common to all lines and arise only in the ejecta, can be described by recombination front moving outward in the expanding gas without either a stellar wind or circumstellar collisions.
432 - Michael Friedjung 2012
The evidence for the presence of optically thick winds, produced by classical novae after optical maximum, has been challenged in recent papers. In addition, signs of orbital phase dependent photometric variations, sometimes seen quite early in the d evelopment of nova outbursts, are hard to interpret in the framework of optically thick envelopes and especially winds. A general discussion for belief in the presence of optically thick winds with increasing ejection velocities during the early stages of novae after their explosion, must be given. This has to be done in order to clarify ideas about novae as well as to contribute in particular to the understanding of the behaviour of novae V1500 Cyg and V1493 Aql showing phase dependent variations during very early decline after the outburst. Possible ways of overcoming the apparent contradiction of phase dependent variations through the production of deviations from spherical symmetry of the winds, are looked at and order of magnitude estimates are made for different theoretical scenarios, which might produce such deviations. It is found that large deviations from spherical symmetry of the optically thick winds in early phases after the explosion can easily explain the problem of variations. In particular, the presence of a magnetic field might have had a non-negligible effect on the wind of V1500 Cyg, while at the present there is not enough information available concerning V1493 Aql. Optically thick winds/envelopes are almost certainly present in the early stages after optical maximum of a nova, while it is difficult to make pure Hubble flow models fit the observations of those stages. New more detailed observational and theoretical work, in particular including the effects of magnetic fields on the winds, is needed.
WD J005311 is a newly identified white dwarf (WD) in a mid-infrared nebula. The spectroscopic observation indicates the existence of a neon-enriched carbon/oxygen wind with a terminal velocity of $v_{infty,rm obs}sim 16,000,rm km,s^{-1}$ and a mass l oss rate of $dot M_{rm obs}sim 3.5times 10^{-6},M_odot$ yr$^{-1}$. Here we consistently explain the properties of WD J005311 using a newly constructed wind solution, where the optically thick outflow is launched from the carbon burning shell on an oxygen-neon core and accelerated by the rotating magnetic field to become supersonic and unbound well below the photosphere. Our model implies that WD J005311 has a mass of $M_* sim 1.1mbox{-}1.3,M_odot$, a magnetic field of $B_* sim (2mbox{-}5)times 10^7,rm G$, and a spin angular frequency of $Omega sim 0.2mbox{-}0.5 ,rm s^{-1}$. The large magnetic field and fast spin support the carbon-oxygen WD merger origin. WD J005311 will neither explode as a type Ia supernova nor collapse into a neutron star. If the wind continues to blow another few kyr, WD J005311 will spin down significantly and join to the known sequence of slowly-rotating magnetic WDs. Otherwise it may appear as a fast-spinning magnetic WD and could be a new high energy source.
145 - S. N. Shore 2012
We continue our study of the physical properties of the recurrent nova T Pyx, focussing on the structure of the ejecta in the nebular stage of expansion during the 2011 outburst. The nova was observed contemporaneously with the Nordic Optical Telesco pe (NOT), at high resolution spectroscopic resolution (R ~ 65000) on 2011 Oct. 11 and 2012 Apr. 8 (without absolute flux calibration), and with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope, at high resolution (R ~ 30000) on 2011 Oct. 10 and 2012 Mar. 28 (absolute fluxes). We use standard plasma diagnostics (e.g. [O III] and [N II] line ratios and the H$beta$ line fluxes) to constrain electron densities and temperatures. Using Monte Carlo modeling of the ejecta, we derive the structure and filling factor from comparisons to the optical and ultraviolet line profiles. The ejecta can be modeled using an axisymmetric conical -- bipolar -- geometry with a low inclination of the axis to the line of sight, i=15+/-5 degrees, compatible with published results from high angular resolution optical spectro-interferometry. The structure is similar to that observed in the other short orbital period recurrent novae during their nebular stages. We show that the electron density scales as $t^{-3}$ as expected from a ballistically ejected constant mass shell; there is no need to invoke a continuing mass outflow following the eruption. The derived mass for the ejecta with filling factor f ~ 3%, M_ej ~ 2E-6$M_sun is similar to that obtained for other recurrent nova ejecta but inconsistent with the previously reported extended optically thick epoch of the explosion. We suggest that the system underwent a common envelope phase following the explosion that produced the recombination event. Implications for the dynamics of the recurrent novae are discussed. (truncated)
The unprecedented sky coverage and observing cadence of the All-Sky Automated Survey for SuperNovae (ASAS-SN) has resulted in the discovery and continued monitoring of a large sample of Galactic transients. The vast majority of these are accretion-po wered dwarf nova outbursts in cataclysmic variable systems, but a small subset are thermonuclear-powered classical novae. Despite improved monitoring of the Galaxy for novae from ASAS-SN and other surveys, the observed Galactic nova rate is still lower than predictions. One way classical novae could be missed is if they are confused with the much larger population of dwarf novae. Here, we examine the properties of 1617 dwarf nova outbursts detected by ASAS-SN and compare them to classical novae. We find that the mean classical nova brightens by ~11 magnitudes during outburst, while the mean dwarf nova brightens by only ~5 magnitudes, with the outburst amplitude distributions overlapping by roughly 15%. For the first time, we show that the amplitude of an outburst and the time it takes to decline by two magnitudes from maximum are positively correlated for dwarf nova outbursts. For classical novae, we find that these quantities are negatively correlated, but only weakly, compared to the strong anti-correlation of these quantities found in some previous work. We show that, even if located at large distances, only a small number of putative dwarf novae could be mis-classified classical novae suggesting that there is minimal confusion between these populations. Future spectroscopic follow-up of these candidates can show whether any are indeed classical novae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا