ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular limits of Voigt models in fluid dynamics

79   0   0.0 ( 0 )
 نشر من قبل Michele Coti Zelati
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the long-term behavior, as a certain regularization parameter vanishes, of the three-dimensional Navier-Stokes-Voigt model of a viscoelastic incompressible fluid. We prove the existence of global and exponential attractors of optimal regularity. We then derive explicit upper bounds for the dimension of these attractors in terms of the three-dimensional Grashof number and the regularization parameter. Finally, we also prove convergence of the (strong) global attractor of the 3D Navier-Stokes-Voigt model to the (weak) global attractor of the 3D Navier-Stokes equation. Our analysis improves and extends recent results obtained by Kalantarov and Titi in [31].


قيم البحث

اقرأ أيضاً

86 - I. Bailleul , Y. Bruned 2021
Let $mathscr{T}$ be the regularity structure associated with a given system of singular stochastic PDEs. The paracontrolled representation of the $sf Pi$ map provides a linear parametrization of the nonlinear space of admissible models $sf M=(g,Pi)$ on $mathscr{T}$, in terms of the family of para-remainders used in the representation. We give an explicit description of the action of the most general class of renormalization schemes presently available on the parametrization space of the space of admissible models. The action is particularly simple for renormalization schemes associated with degree preserving preparation maps; the BHZ renormalization scheme has that property.
Adaptive (or co-evolutionary) network dynamics, i.e., when changes of the network/graph topology are coupled with changes in the node/vertex dynamics, can give rise to rich and complex dynamical behavior. Even though adaptivity can improve the modell ing of collective phenomena, it often complicates the analysis of the corresponding mathematical models significantly. For non-adaptive systems, a possible way to tackle this problem is by passing to so-called continuum or mean-field limits, which describe the system in the limit of infinitely many nodes. Although fully adaptive network dynamic models have been used a lot in recent years in applications, we are still lacking a detailed mathematical theory for large-scale adaptive network limits. For example, continuum limits for static or temporal networks are already established in the literature for certain models, yet the continuum limit of fully adaptive networks has been open so far. In this paper we introduce and rigorously justify continuum limits for sequences of adaptive Kuramoto-type network models. The resulting integro-differential equations allow us to incorporate a large class of co-evolving graphs with high density. Furthermore, we use a very general measure-theoretical framework in our proof for representing the (infinite) graph limits, thereby also providing a structural basis to tackle even larger classes of graph limits. As an application of our theory, we consider the continuum limit of an adaptive Kuramoto model directly motivated from neuroscience and studied by Berner et al.~in recent years using numerical techniques and formal stability analysis.
We investigate the large time behavior of $N$ particles restricted to a smooth closed curve in $mathbb{R}^d$ and subject to a gradient flow with respect to Euclidean hyper-singular repulsive Riesz $s$-energy with $s>1.$ We show that regardless of the ir initial positions, for all $N$ and time $t$ large, their normalized Riesz $s$-energy will be close to the $N$-point minimal possible. Furthermore, the distribution of such particles will be close to uniform with respect to arclength measure along the curve.
371 - Yonghui Zhou , Shuguan Ji 2020
This paper is concerned with the globally exponential stability of traveling wave fronts for a class of population dynamics model with quiescent stage and delay. First, we establish the comparison principle of solutions for the population dynamics mo del. Then, by the weighted energy method combining comparison principle, the globally exponential stability of traveling wave fronts of the population dynamics model under the quasi-monotonicity conditions is established.
Deep learning models evolve through training to learn the manifold in which the data exists to satisfy an objective. It is well known that evolution leads to different final states which produce inconsistent predictions of the same test data points. This calls for techniques to be able to empirically quantify the difference in the trajectories and highlight problematic regions. While much focus is placed on discovering what models learn, the question of how a model learns is less studied beyond theoretical landscape characterizations and local geometric approximations near optimal conditions. Here, we present a toolkit for the Dynamical Organization Of Deep Learning Loss Landscapes, or DOODL3. DOODL3 formulates the training of neural networks as a dynamical system, analyzes the learning process, and presents an interpretable global view of trajectories in the loss landscape. Our approach uses the coarseness of topology to capture the granularity of geometry to mitigate against states of instability or elongated training. Overall, our analysis presents an empirical framework to extract the global dynamics of a model and to use that information to guide the training of neural networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا