ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

52   0   0.0 ( 0 )
 نشر من قبل Aaron Alejo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6+, O8+, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented.

قيم البحث

اقرأ أيضاً

Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the en ergy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided.
In this work we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is chaotic enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interaction s in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is nearly isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell- Boltzmann (MB) distribution, a shifted MB distribution (sMB) and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly chaotic and practically not distinguishable from a thermalized one.
221 - K.F.F. Law , Y. Abe , A. Morace 2019
Magnetic reconnection is a process whereby magnetic field lines in different directions reconnect with each other, resulting in the rearrangement of magnetic field topology together with the conversion of magnetic field energy into the kinetic energy (K.E.) of energetic particles. This process occurs in magnetized astronomical plasmas, such as those in the solar corona, Earths magnetosphere, and active galactic nuclei, and accounts for various phenomena, such as solar flares, energetic particle acceleration, and powering of photon emission. In the present study, we report the experimental demonstration of magnetic reconnection under relativistic electron magnetization situation, along with the observation of power-law distributed outflow in both electron and proton energy spectra. Through irradiation of an intense laser on a micro-coil, relativistically magnetized plasma was produced and magnetic reconnection was performed with maximum magnetic field 3 kT. In the downstream outflow direction, the non-thermal component is observed in the high-energy part of both electron and proton spectra, with a significantly harder power-law slope of the electron spectrum (p = 1.535 +/- 0.015) that is similar to the electron injection model proposed to explain a hard emission tail of Cygnus X-1, a galactic X-ray source with the same order of magnetization. The obtained result showed experimentally that the magnetization condition in the emitting region of a galactic X-ray source is sufficient to build a hard electron population through magnetic reconnection.
Laser-ion acceleration with ultra-short pulse, PW-class lasers is dominated by non-thermal, intra-pulse plasma dynamics. The presence of multiple ion species or multiple charge states in targets leads to characteristic modulations and even mono-energ etic features, depending on the choice of target material. As spectral signatures of generated ion beams are frequently used to characterize underlying acceleration mechanisms, thermal, multi-fluid descriptions require a revision for predictive capabilities and control in next-generation particle beam sources. We present an analytical model with explicit inter-species interactions, supported by extensive ab initio simulations. This enables us to derive important ensemble properties from the spectral distribution resulting from those multi-species effects for arbitrary mixtures. We further propose a potential experimental implementation with a novel cryogenic target, delivering jets with variable mixtures of hydrogen and deuterium. Free from contaminants and without strong influence of hardly controllable processes such as ionization dynamics, this would allow a systematic realization of our predictions for the multi-species effect.
104 - W. Bang , G. Dyer , H. J. Quevedo 2013
We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1-10 mm^3) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2x10^6 and 1.6x10^7 neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا