ﻻ يوجد ملخص باللغة العربية
We study the reverse mathematics and computability-the-o-re-tic strength of (stable) Ramseys Theorem for pairs and the related principles COH and DNR. We show that SRT$^2_2$ implies DNR over RCA$_0$ but COH does not, and answer a question of Mileti by showing that every computable stable $2$-coloring of pairs has an incomplete $Delta^0_2$ infinite homogeneous set. We also give some extensions of the latter result, and relate it to potential approaches to showing that SRT$^2_2$ does not imply RT$^2_2$.
In this paper, we show that $mathrm{RT}^{2}+mathsf{WKL}_0$ is a $Pi^{1}_{1}$-conservative extension of $mathrm{B}Sigma^0_3$.
We prove that any proof of a $forall Sigma^0_2$ sentence in the theory $mathrm{WKL}_0 + mathrm{RT}^2_2$ can be translated into a proof in $mathrm{RCA}_0$ at the cost of a polynomial increase in size. In fact, the proof in $mathrm{RCA}_0$ can be found
We consider two combinatorial principles, ${sf{ERT}}$ and ${sf{ECT}}$. Both are easily proved in ${sf{RCA}}_0$ plus ${Sigma^0_2}$ induction. We give two proofs of ${sf{ERT}}$ in ${sf{RCA}}_0$, using different methods to eliminate the use of ${Sigma^0
The Gratzer-Schmidt theorem of lattice theory states that each algebraic lattice is isomorphic to the congruence lattice of an algebra. We study the reverse mathematics of this theorem. We also show that the set of indices of computable lattices th
We analyze the strength of Hellys selection theorem HST, which is the most important compactness theorem on the space of functions of bounded variation. For this we utilize a new representation of this space intermediate between $L_1$ and the Sobolev