ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor-to-Scalar Ratio in Eddington-inspired Born-Infeld Inflation

177   0   0.0 ( 0 )
 نشر من قبل Inyong Cho
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the scalar perturbation of the inflation model driven by a massive-scalar field in Eddington-inspired Born-Infeld gravity. We focus on the perturbation at the attractor stage in which the first and the second slow-roll conditions are satisfied. The scalar perturbation exhibits the corrections to the chaotic inflation model in general relativity. We find that the tensor-to-scalar ratio becomes smaller than that of the usual chaotic inflation.



قيم البحث

اقرأ أيضاً

206 - Inyong Cho , Jinn-Ouk Gong 2015
We investigate the scalar and tensor spectral indices of the quadratic inflation model in Eddington-inspired Born-Infeld (EiBI) gravity. We find that the EiBI corrections to the spectral indices are of second and first order in the slow-roll approxim ation for the scalar and tensor perturbations respectively. This is very promising since the quadratic inflation model in general relativity provides a very nice fit for the spectral indices. Together with the suppression of the tensor-to-scalar ratio EiBI inflation agrees well with the observational data.
We investigate the tensor perturbation in the inflation model driven by a massive-scalar field in Eddington-inspired Born-Infeld gravity. For short wave-length modes, the perturbation feature is very similar to that of the usual chaotic inflation. Fo r long wave-length modes, the perturbation exhibits a peculiar rise in the power spectrum which may leave a signature in the cosmic microwave background radiation.
We investigate the scalar perturbation produced at the pre-inflationary stage driven by a massive scalar field in Eddington-inspired Born-Infeld gravity. The scalar power spectrum exhibits a peculiar rise for low $k$-modes. The tensor-to-scalar ratio can be significantly lowered compared with that in the standard chaotic inflation model in general relativity. This result is very affirmative considering the recent dispute on the detection of the gravitational wave radiation between PLANCK and BICEP2.
We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2+1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping proce dure that allows to generate solutions in certain families of metric-affine gravity theories starting from a known seed solution of General Relativity, which in the present case corresponds to the electrically charged Banados-Teitelboim-Zanelli (BTZ) solution. We discuss the main features of the new configurations, including the modifications to the ergospheres and horizons, the emergence of wormhole structures, and the consequences for the regularity (or not) of these space-times via geodesic completeness.
We give the Buchdahl stability bound in Eddington-inspired Born-Infeld (EiBI) gravity. We show that this bound depends on an energy condition controlled by the model parameter $kappa$. From this bound, we can constrain $kappalesssim 10^{8}text{m}^2$ if a neutron star with a mass around $3M_{odot}$ is observed in the future. In addition, to avoid the potential pathologies in EiBI, a emph{Hagedorn-like} equation of state associated with $kappa$ at the center of a compact star is inevitable, which is similar to the Hagedorn temperature in string theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا