ﻻ يوجد ملخص باللغة العربية
In this paper, we derive a simple equality that relates the spectral function $I(k,omega)$ and the fidelity susceptibility $chi_F$, i.e. $% chi_F=lim_{etarightarrow 0}frac{pi}{eta} I(0, ieta)$ with $eta$ being the half-width of the resonance peak in the spectral function. Since the spectral function can be measured in experiments by the neutron scattering or the angle-resolved photoemission spectroscopy(ARPES) technique, our equality makes the fidelity susceptibility directly measurable in experiments. Physically, our equality reveals also that the resonance peak in the spectral function actually denotes a quantum criticality-like point at which the solid state seemly undergoes a significant change.
We study fidelity susceptibility in one-dimensional asymmetric Hubbard model, and show that the fidelity susceptibility can be used to identify the universality class of the quantum phase transitions in this model. The critical exponents are found to
We extend the formalism of entanglement renormalization to the study of boundary critical phenomena. The multi-scale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical g
Magnetic-field-induced phase transitions are investigated in the frustrated gapped quantum paramagnet Rb$_{2}$Cu$_{2}$Mo$_3$O$_{12}$ through dielectric and calorimetric measurements on single-crystal samples. It is clarified that the previously repor
Motivated by recent development in quantum fidelity and fidelity susceptibility, we study relations among Lie algebra, fidelity susceptibility and quantum phase transition for a two-state system and the Lipkin-Meshkov-Glick model. We get the fidelity
We calculate numerically the fidelity and its susceptibility for the ground state of the Dicke model. A minimum in the fidelity identifies the critical value of the interaction where a quantum phase crossover, the precursor of a phase transition for