ترغب بنشر مسار تعليمي؟ اضغط هنا

Single fermion manipulation via superconducting phase differences in multiterminal Josephson junctions

42   0   0.0 ( 0 )
 نشر من قبل Bernard van Heck
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how the superconducting phase difference in a Josephson junction may be used to split the Kramers degeneracy of its energy levels and to remove all the properties associated with time reversal symmetry. The superconducting phase difference is known to be ineffective in two-terminal short Josephson junctions, where irrespective of the junction structure the induced Kramers degeneracy splitting is suppressed and the ground state fermion parity must stay even, so that a protected zero-energy Andreev level crossing may never appear. Our main result is that these limitations can be completely avoided by using multi-terminal Josephson junctions. There the Kramers degeneracy breaking becomes comparable to the superconducting gap, and applying phase differences may cause the change of the ground state fermion parity from even to odd. We prove that the necessary condition for the appearance of a fermion parity switch is the presence of a discrete vortex in the junction: the situation when the phases of the superconducting leads wind by $2pi$. Our approach offers new strategies for creation of Majorana bound states as well as spin manipulation. Our proposal can be implemented using any low density, high spin-orbit material such as InAs quantum wells, and can be detected using standard tools.

قيم البحث

اقرأ أيضاً

We report on the study of the non-trivial Berry phase in superconducting multiterminal quantum dots biased at commensurate voltages. Starting with the time-periodic Bogoliubov-de Gennes equations, we obtain a tight binding model in the Floquet space, and we solve these equations in the semiclassical limit. We observe that the parameter space defined by the contact transparencies and quartet phase splits into two components with a non-trivial Berry phase. We use the Bohr-Sommerfeld quantization to calculate the Berry phase. We find that if the quantum dot level sits at zero energy, then the Berry phase takes the values $varphi_B=0$ or $varphi_B=pi$. We demonstrate that this non-trivial Berry phase can be observed by tunneling spectroscopy in the Floquet spectra. Consequently, the Floquet-Wannier-Stark ladder spectra of superconducting multiterminal quantum dots are shifted by half-a-period if $varphi_B=pi$. Our numerical calculations based on Keldysh Greens functions show that this Berry phase spectral shift can be observed from the quantum dot tunneling density of states.
In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristiv e) character and thus should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to a non-stationary, phase-dependent noise. As a consequence, dynamic and thermal noise necessarily show a phase dependence otherwise absent in nondissipative JJ models. This phase dependence may be realized experimentally as a hysteresis effect if the unavoidable time averaging of the experimental probe is shorter than the period of the Josephson phase.
193 - M. Houzet , P. Samuelsson 2010
We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.
Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase-measurements as the fingerprint of the topological transition are missing. By embedding two gate-tunable Al/InAs Josephson junctions in a loop geometry, we measure a $pi$-jump in the junction phase with increasing in-plane magnetic field, ${bf B}_|$. This jump is accompanied by a minimum of the critical current, indicating a closing and reopening of the superconducting gap, strongly anisotropic in ${bf B}_|$. Our theory confirms that these signatures of a topological transition are compatible with the emergence of Majorana states.
We study the influence of superconducting correlations on the electronic specific heat in a diffusive superconductor-normal metal-superconductor Josephson junction. We present a description of this system in the framework of the diffusive-limit Green s function theory, taking into account finite temperatures, phase difference as well as junction parameters. We find that proximity effect may lead to a substantial deviation of the specific heat as compared to that in the normal state, and that it can be largely tuned in magnitude by changing the phase difference between the superconductors. A measurement setup to confirm these predictions is also suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا