ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Covariant Horava-Lifshitz Gravity from frame-dragging experiment

152   0   0.0 ( 0 )
 نشر من قبل Ninfa Radicella
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of Horava-Lifshitz corrections to the gravito-magnetic field are analyzed. Solutions in the weak field, slow motion limit, referring to the motion of a satellite around the Earth are considered. The post-newtonian paradigm is used to evaluate constraints on the Horava-Lifshitz parameter space from current satellite and terrestrial experiments data. In particular, we focus on GRAVITY PROBE B, LAGEOS and the more recent LARES mission, as well as a forthcoming terrestrial project, GINGER.



قيم البحث

اقرأ أيضاً

134 - Remo Garattini 2014
We investigate the connection between Gravitys Rainbow and Horava-Lifshitz gravity, since both theories incorporate a modification in the UltraViolet regime which improves their quantum behavior at the cost of the Lorentz invariance loss. In particul ar, extracting the Wheeler-De Witt equations of the two theories in the case of Friedmann-Lemaitre-Robertson-Walker and spherically symmetric geometries, we establish a correspondence that bridges them.
In the present paper, we have considered the three parameters: mass, charge and rotation to discuss their combined effect on frame dragging for a charged rotating body. If we consider the ray of light which is emitted radially outward from a rotating body then the frame dragging shows a periodic nature with respect to coordinate $phi$ (azimuthal angle). It has been found that the value of frame dragging obtains a maximum at, $ phi =frac{pi}{2}$ and a minimum at $ phi =frac{3 pi}{2}$.
In this work we focus on a toy model: (3+1)-dimensional Hov{r}ava-Lifshitz gravity coupling with an anisotropic electromagnetic (EM) field which is generated through a Kaluza-Klein reduction of a (4+1)-dimensional Hov{r}ava-Lifshitz gravity. This mod el exhibits a remarkable feature that it has the same velocity for both gravitational and electromagnetic waves. This feature makes it possible to restrict the parameters of the theory from GRB 170817A. In this work we use this feature to discuss possible constraints on the parameter $beta$ in the theory, by analyzing the possible Lorentz invariance violation effect of the GRB 170817A. This is achieved by analyzing potential time delay of gamma-ray photons in this event. It turns out that it places a stringent constraint on this parameter. In the most ideal case, it gives $|1-sqrt{beta}|<(10^{-19}-10^{-18})$.
167 - Taekyung Kim , Yoonbai Kim 2010
We find exact static stringy solutions of Horava-Lifshitz gravity with the projectability condition but imposing the detailed balance condition near the UV fixed point, and propose a method on constraining the possible pattern of flows in Horava-Lifs hitz gravity by using the obtained classical solutions. In the obtained vacuum solutions, the parameters related to the speed of the graviton and the coefficients of quartic spatial derivative terms lead to intriguing effects: the change of graviton speed yields a surplus angle and the quartic derivatives make the square of effective electric charge negative. The result of a few tests based on the geometries of a cone, an excess cone, a black string, and a charged (black) string seems suggestive. For example, the flow of constant graviton speed and variable Newtons coupling can be favored in the vicinity of IR fixed point, but the conclusion is indistinct and far from definite yet. Together with the numerous classical solutions, static or time-dependent, which have already been found, the accumulated data from various future tests will give some hints in constraining the flow patterns more deterministic.
Non-stationary null dust in a spherically symmetric spacetime is studied in the context of a general-covariant Horava-Lifshitz theory. The non-minimal coupling to matter is considered in the infrared limit. The aim of this paper is to study whether t he collapse of a null dust-like fluid can be a solution of Hov{r}ava-Lifshitz theory in the infrared limit. We have shown that the unique possible solution is static. This solution represents a Minkowski spacetime since the energy density is null.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا