ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of relatively hydrogen-poor giants in the Galactic globular cluster Omega Centauri

117   0   0.0 ( 0 )
 نشر من قبل B P Hema
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, the results of our low-resolution spectroscopic survey for identifying the hydrogen-deficient (H-deficient) stars in the red giant sample of the globular cluster Omega Cen are reported. Spectral analyses were carried out on the basis of the strengths of (0,0) MgH band and the Mg b triplet. In our sample, four giants were identified with weak/absent MgH bands in their observed spectra not as expected for their well determined stellar parameters. The Mg abundances for the program stars were determined from subordinate lines of the MgH band to the blue of the Mg b triplet, using the spectral synthesis technique. The derived Mg abundances for the program stars were as expected for the red giants of Omega Cen (Norris & Da Costa 1995), except for the four identified candidates. Determined Mg abundances of these four candidates are much lower than that expected for the red giants of Omega Cen, and are unacceptable based on the strengths of Mg b triplet in their observed spectra. Hence, the plausible reason for the weak/absent MgH bands in the observed spectra of these stars is a relatively lower abundance of hydrogen in their atmospheres. These giants may belong to the group of helium enriched red giants of Omega Cen.



قيم البحث

اقرأ أيضاً

80 - B. P. Hema 2018
High-resolution optical spectra are analyzed for two of the four metal rich mildly hydrogen-poor or helium-enhanced giants discovered by Hema and Pandey (2014) along with their comparison normal (hydrogen-rich) giants of Omega Cen. The strengths of t he MgH bands in the spectra of the program stars are analyzed for their derived stellar parameters. The observed spectra of the sample (hydrogen-poor) stars (LEID 39048 and LEID 34225) show weaker MgH bands unlike in the spectra of the normal comparison giants (LEID 61067 and LEID 32169). The magnesium abundance derived from MgH bands is less by 0.3 dex or more for LEID 39048 and LEID 34225, than that derived from Mg I lines. This difference, cannot be reconciled by making the changes to the stellar parameters within the uncertainties. This difference in the magnesium abundances derived from Mg I lines and from the MgH band is unacceptable. This difference is attributed to the hydrogen-deficiency or helium-enhancement in their atmospheres. These metal rich hydrogen-poor or helium-rich giants provide an important link to the evolution of the metal-rich sub population of Omega Cen. These stars provide the first direct spectroscopic evidence for the presence of the He-enhancement in the metal rich giants of Omega Cen.
We present abundances of several light, alpha, Fe-peak, and neutron-capture elements for 66 red giant branch (RGB) stars in the Galactic globular cluster Omega Centauri. Our observations lie in the range 12.0<V<13.5 and focus on the intermediate and metal-rich RGBs. We find that there are at least four peaks in the metallicity distribution function at [Fe/H]=-1.75, -1.45, -1.05, and -0.75, which correspond to about 55%, 30%, 10%, and 5% of our sample, respectively. Additionally, the most metal-rich stars are the most centrally located. Na and Al are correlated despite exhibiting star-to-star dispersions of more than a factor of 10, but the distribution of those elements appears to be metallicity dependent and are divided at [Fe/H]~-1.2. About 40-50% of stars with [Fe/H]<-1.2 have Na and Al abundances consistent with production solely in Type II supernovae and match observations of disk and halo stars at comparable metallicity. The remaining metal-poor stars are enhanced in Na and Al compared to their disk and halo counterparts and are mostly consistent with predicted yields from >5 M_sun asymptotic giant branch (AGB) stars. At [Fe/H]>-1.2, more than 75% of the stars are Na/Al enhanced and may have formed almost exclusively from AGB ejecta. Most of these stars are enhanced in Na by at least 0.2 dex for a given Al abundance than would be expected based on normal globular cluster values. All stars in our sample are alpha-rich and have solar-scaled Fe-peak abundances. Eu does not vary extensively as a function of metallicity; however, [La/Fe] varies from about -0.4 to +2 and stars with [Fe/H]>-1.5 have [La/Eu] values indicating domination by the s-process. A quarter of our sample have [La/Eu]>+1 and may be the result of mass transfer in a binary system.
182 - A. Calamida 2009
We present new intermediate-band Stroemgren photometry based on more than 300 u,v,b,y images of the Galactic globular cluster Omega Cen. Optical data were supplemented with new multiband near-infrared (NIR) photometry (350 J,H,K_s images). The final optical-NIR catalog covers a region of more than 20*20 arcmin squared across the cluster center. We use different optical-NIR color-color planes together with proper motion data available in the literature to identify candidate cluster red giant (RG) stars. By adopting different Stroemgren metallicity indices we estimate the photometric metallicity for ~4,000 RGs, the largest sample ever collected. The metallicity distributions show multiple peaks ([Fe/H]_phot=-1.73+/-0.08,-1.29+/-0.03,-1.05+/-0.02,-0.80+/-0.04,-0.42+/-0.12 and -0.07+/-0.08 dex) and a sharp cut-off in the metal-poor tail ([Fe/H]_phot<=-2 dex) that agree quite well with spectroscopic measurements. We identify four distinct sub-populations,namely metal-poor (MP,[Fe/H]<=-1.49), metal-intermediate (MI,-1.49<[Fe/H]<=-0.93), metal-rich (MR,-0.95<[Fe/H]<=-0.15) and solar metallicity (SM,[Fe/H]~0). The last group includes only a small fraction of stars (~8+/-5%) and should be confirmed spectroscopically. Moreover, using the difference in metallicity based on different photometric indices, we find that the 19+/-1% of RGs are candidate CN-strong stars. This fraction agrees quite well with recent spectroscopic estimates and could imply a large fraction of binary stars. The Stroemgren metallicity indices display a robust correlation with alpha-elements ([Ca+Si/H]) when moving from the metal-intermediate to the metal-rich regime ([Fe/H]>-1.7 dex).
We present manganese abundances in 10 red-giant members of the globular cluster Omega Centauri; 8 stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal rich groups (RGB MInt2 and MInt3). This is the first time Mn abundances have been studied in this peculiar stellar system. The LTE values of [Mn/Fe] in Omega Cen overlap those of Milky Way stars in the metal poor Omega Cen populations ([Fe/H] ~ -1.5 to -1.8), however unlike what is observed in Milky Way halo and disk stars, [Mn/Fe] declines in the two more metal-rich RGB MInt2 and MInt3 targets. Non-LTE calculations were carried out in order to derive corrections to the LTE Mn abundances. The non-LTE results for Omega Cen in comparison with the non-LTE [Mn/Fe] versus [Fe/H] trend obtained for the Milky Way confirm and strengthen the conclusion that the manganese behavior in Omega Cen is distinct. These results suggest that low-metallicity supernovae (with metallicities < -2) of either Type II or Type Ia dominated the enrichment of the more metal-rich stars in Omega Cen. The dominance of low-metallicity stars in the chemical evolution of Omega Cen has been noted previously in the s-process elements where enrichment from metal-poor AGB stars is indicated. In addition, copper, which also has metallicity dependent yields, exhibits lower values of [Cu/Fe] in the RGB MInt2 and MInt3 Omega Cen populations.
We present deep multiband (F435W, F625W, and F658N) photometric data of the Globular Cluster Omega Cen collected with the Advanced Camera for Surveys on board of the Hubble Space Telescope. We identified in the (F435W-F625W, F435W) plane more than tw o thousand White Dwarf (WD) candidates using three out of nine available pointings. Such a large sample appears in agreement with predictions based on the ratio between WD and Horizontal Branch (HB) evolutionary lifetimes. We also detected ~ 1600 WDs in the (F658N-F625W, F625W) plane, supporting the evidence that a large fraction of current cluster WDs are $H_alpha$ bright.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا