ﻻ يوجد ملخص باللغة العربية
By combining the jet quenching Monte Carlo JEWEL with a realistic hydrodynamic model for the background we investigate the sensitivity of jet observables to details of the medium model and quantify the influence of the energy and momentum lost by jets on the background evolution. On the level of event averaged source terms the effects are small and are caused mainly by the momentum transfer.
Energy and momentum loss of jets in heavy ion collisions can affect the fluid dynamic evolution of the medium. We determine realistic event-by-event averages and correlation functions of the local energy-momentum transfer from hard particles to the s
We extend a recent computation of the dependence of the free energy, F, on the noncommutative scale $theta$ to theories with very different UV sensitivity. The temperature dependence of $F$ strongly suggests that a reduced number of degrees of freedo
Quantum information processing shows advantages in many tasks, including quantum communication and computation, comparing to its classical counterpart. The essence of quantum processing lies on the fundamental difference between classical and quantum
In the classic type I seesaw mechanism with very heavy right-handed (RH) neutrinos, it is possible to account for dark matter via RH neutrino portal couplings to a feebly interacting massive particle (FIMP) dark sector. However, for large RH neutrino
The spinor-helicity formalism has proven to be very efficient in the calculation of scattering amplitudes in quantum field theory, while the loop tree duality (LTD) representation of multi-loop integrals exhibits appealing and interesting advantages