ترغب بنشر مسار تعليمي؟ اضغط هنا

Structual Study of Galactic Hot Gas toward Markarian 421 from X-Ray Absorption and Emission Lines

335   0   0.0 ( 0 )
 نشر من قبل Kazuhiro Sakai
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a structural study of the hot ISM in the Galactic halo along the sight line toward the bright active galactic nucleus Mkn 421. The OVII and OVIII absorption lines were measured with the Low Energy Transmission Grating Spectrograph aboard Chandra toward Mkn 421, and the OVII and OVIII emission lines were observed in the adjacent fields of the sight line with the X-ray Imaging Spectrometer aboard Suzaku. We jointly analyzed the absorption and the emission spectra assuming exponential distributions of the gas temperature and density from the Galactic plane, and constrained the temperature and density at the plane to be $(3.2^{+0.6}_{-0.7})times 10^6,mathrm{K}$ and $(1.2^{+0.5}_{-0.4})times 10^{-3},mathrm{cm^{-3}}$, with the scale heights of $1.6^{+1.7}_{-0.7},mathrm{kpc}$ and $>2.8,mathrm{kpc}$ respectively. The results are consistent with those obtained in the LMC X-3 direction and the PKS 2155-304 direction, describing a thick disk-like hot gas with its height of a few kpc from the Galactic plane.



قيم البحث

اقرأ أيضاً

Although the existence of large-scale hot gaseous halos around massive disk galaxies have been theorized for a long time, there is yet very little observational evidence. We report the Chandra and XMM-Newton grating spectral detection of OVII and NeI X Kalpha absorption lines along the sight-line of 4U 1957+11. The line absorption is consistent with the interstellar medium in origin. Attributing these line absorptions to the hot gas associated with the Galactic disk, we search for the gaseous halo around the Milky Way by comparing this sight-line with more distant ones (toward X-ray binary LMC X-3 and the AGN Mrk 421). We find that all the line absorptions along the LMC X-3 and Mrk 421 sight-lines are attributable to the hot gas in a thick Galactic disk, as traced by the absorption lines in the spectra of 4U~1957+11 after a Galactic latitude dependent correction. We constrain the OVII column density through the halo to be N(OVII) < 5E15 cm^{-2} (95% confidence limit), and conclude that the hot gas contribution to the metal line absorptions, if existing, is negligible.
We present a detailed spectroscopic study of the hot gas toward the Galactic bulge along the 4U 1820-303 sight line by a combination analysis of emission and absorption spectra. In addition to the absorption lines of OVII Kalpha, OVII Kbeta, OVIII Ka lpha and NeIX Kalpha by Chandra LTGS as shown by previous works, Suzaku detected clearly the emission lines of OVII, OVIII, NeIX and NeX from the vicinity. We used simplified plasma models with constant temperature and density. Evaluation of the background and foreground emission was performed carefully, including stellar X-ray contribution based on the recent X-ray observational results and stellar distribution simulator. If we assume that one plasma component exists in front of 4U1820-303 and the other one at the back, the obtained temperatures are T= 1.7 +/- 0.2 MK for the front-side plasma and T=3.9(+0.4-0.3) MK for the backside. This scheme is consistent with a hot and thick ISM disk as suggested by the extragalactic source observations and an X-ray bulge around the Galactic center.
High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio ($varepsilon$) and (b) the ejection efficiency ($p$). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter ($xi$), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of $p$ ($gtrsim 0.1$, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of $xi$ is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.
We report the Chandra detection of OVII Kalpha absorption at z=0 in the direction of the z=0.03 Seyfert 1 galaxy Mkn 279. The high velocity cloud Complex C lies along this line of sight, with HI 21-cm emission and OVI 1032AA absorption both observed at velocities of ~ -150 km/s relative to the local standard of rest. We present an improved method for placing limits on the Doppler parameter and column density of a medium when only one unresolved line can be measured; this method is applied to the OVII absorption seen here, indicating that the OVII Doppler parameter is inconsistent with that of any low-velocity (Galactic thick disk) or high-velocity OVI (OVI_HV) component. Direct association of the OVII with the OVI_HV is further ruled out by the high temperatures required to produce the observed OVI_HV/OVII ratio and the significant velocity difference between the OVII and OVI_HV lines. If the OVII absorption is associated with a very broad, undetected OVI component, then the absorption must be broadened by primarily nonthermal processes. The large velocity dispersion and possible slight redshift of the OVII absorption (as well as limits on the absorbers temperature and density) may be indicative of a local intergalactic medium origin, though absorption from a hot, low-density Galactic corona cannot be ruled out.
71 - T. Fang 2002
Recently, with the Chandra X-ray Telescope we have detected several local X-ray absorption lines along lines-of-sight towards distant quasars. These absorption lines are produced by warm/hot gas located in local intergalactic space and/or in our Gala xy. I will present our observations and discuss the origin of the X-ray absorption and its implications in probing the warm/hot component of local baryons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا