ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a Companion Candidate in the HD169142 Transition Disk and the Possibility of Multiple Planet Formation

86   0   0.0 ( 0 )
 نشر من قبل Maddalena Reggiani
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present L and J-band high-contrast observations of HD169142, obtained with the VLT/NACO AGPM vector vortex coronagraph and the Gemini Planet Imager, respectively. A source located at 0.156+/-0.032 north of the host star (PA=7.4+/-11.3 degrees) appears in the final reduced L image. At the distance of the star (~145 pc), this angular separation corresponds to a physical separation of 22.7+/-4.7 AU, locating the source within the recently resolved inner cavity of the transition disk. The source has a brightness of L=12.2+/-0.5 mag, whereas it is not detected in the J band (J>13.8 mag). If its L brightness arose solely from the photosphere of a companion and given the J-L color constraints, it would correspond to a 28-32 MJupiter object at the age of the star, according to the COND models. Ongoing accretion activity of the star suggests, however, that gas is left in the inner disk cavity from which the companion could also be accreting. In this case the object could be lower in mass and its luminosity enhanced by the accretion process and by a circumplanetary disk. A lower mass object is more consistent with the observed cavity width. Finally, the observations enable us to place an upper limit on the L-band flux of a second companion candidate orbiting in the disk annular gap at ~50 AU, as suggested by millimeter observations. If the second companion is also confirmed, HD169142 might be forming a planetary system, with at least two companions opening gaps and possibly interacting with each other.



قيم البحث

اقرأ أيضاً

Young circumstellar disks are of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspec ted to be disk features. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of planets and search for disk structures indicative for disk-planet interactions and other evolutionary processes. We analyse new and archival near-infrared (NIR) images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo and Gemini/NICI instruments in polarimetric differential imaging (PDI) and angular differential imaging (ADI) modes. We detect a point source within the gap of the disk at about 195 mas (about 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. We confirm the detection of a large gap of about 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than about 17 au in radius. The images of the outer disk show evidence of a complex azimuthal brightness distribution which may in part be explained by Rayleigh scattering from very small grains. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres and evolutionary models.
207 - Sascha P. Quanz 2013
We present H-band VLT/NACO polarized light images of the Herbig Ae/Be star HD169142 probing its protoplanetary disk as close as ~0.1 to the star. Our images trace the face-on disk out to ~1.7 (~250 AU) and reveal distinct sub-structures for the first time: 1) the inner disk (<20 AU) appears to be depleted in scattering dust grains; 2) an unresolved disk rim is imaged at ~25 AU; 3) an annular gap extends from ~40 - 70 AU; 4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting - but yet to be proven - one. Outside of ~85 AU the surface brightness drops off roughly r^{-3.3}, but describing the disk regions between 85-120 AU / 120-250 AU separately with power-laws r^{-2.6} / r^{-3.9} provides a better fit hinting towards another discontinuity in the disk surface. The flux ratio between the disk integrated polarized light and the central star is ~4.1 * 10^{-3}. Finally, combining our results with those from the literature, ~40% of the scattered light in the H-band appears to be polarized. Our results emphasize that HD169142 is an interesting system for future planet formation or disk evolution studies.
We report a discovery of a companion candidate around one of {it Kepler} Objects of Interest (KOIs), KOI-94, and results of our quantitative investigation of the possibility that planetary candidates around KOI-94 are false positives. KOI-94 has a pl anetary system in which four planetary detections have been reported by {it Kepler}, suggesting that this system is intriguing to study the dynamical evolutions of planets. However, while two of those detections (KOI-94.01 and 03) have been made robust by previous observations, the others (KOI-94.02 and 04) are marginal detections, for which future confirmations with various techniques are required. We have conducted high-contrast direct imaging observations with Subaru/HiCIAO in $H$ band and detected a faint object located at a separation of $sim0.6$ from KOI-94. The object has a contrast of $sim 1times 10^{-3}$ in $H$ band, and corresponds to an M type star on the assumption that the object is at the same distance of KOI-94. Based on our analysis, KOI-94.02 is likely to be a real planet because of its transit depth, while KOI-94.04 can be a false positive due to the companion candidate. The success in detecting the companion candidate suggests that high-contrast direct imaging observations are important keys to examine false positives of KOIs. On the other hand, our transit light curve reanalyses lead to a better period estimate of KOI-94.04 than that on the KOI catalogue and show that the planetary candidate has the same limb darkening parameter value as the other planetary candidates in the KOI-94 system, suggesting that KOI-94.04 is also a real planet in the system.
We present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object, discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3$pm$0.3 au (0.618$pm$0.004) from the star. With the high astromet ric precision afforded by GPI, we have confirmed common proper motion of HR 2562B with the star with only a month time baseline between observations to more than $5sigma$. Spectral data in $J$, $H$, and $K$ bands show morphological similarity to L/T transition objects. We assign a spectral type of L7$pm$3 to HR 2562B, and derive a luminosity of $log$(L$_{rm bol}$/L$_{odot}$)=-4.62$pm$0.12, corresponding to a mass of 30$pm$15 M$_{rm Jup}$ from evolutionary models at an estimated age of the system of 300-900 Myr. Although the uncertainty in the age of the host star is significant, the spectra and photometry exhibit several indications of youth for HR 2562B. The source has a position angle consistent with an orbit in the same plane as the debris disk recently resolved with Herschel. Additionally, it appears to be interior to the debris disk. Though the extent of the inner hole is currently too uncertain to place limits on the mass of HR 2562B, future observations of the disk with higher spatial resolution may be able to provide mass constraints. This is the first brown dwarf-mass object found to reside in the inner hole of a debris disk, offering the opportunity to search for evidence of formation above the deuterium burning limit in a circumstellar disk.
We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting planet candidate. We report on photometric and spectroscopic high-contrast observations with the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory. They reveal a directly imaged planet candidate close to the young M3 star CVSO 30. The JHK-band photometry of the newly identified candidate is at better than 1 sigma consistent with late-type giants, early-T and early-M dwarfs, and free-floating planets. Other hypotheses such as galaxies can be excluded at more than 3.5 sigma. A lucky imaging z photometric detection limit z= 20.5 mag excludes early-M dwarfs and results in less than 10 MJup for CVSO 30 c if bound. We present spectroscopic observations of the wide companion that imply that the only remaining explanation for the object is that it is the first very young (< 10 Myr) L-T-type planet bound to a star, meaning that it appears bluer than expected as a result of a decreasing cloud opacity at low effective temperatures. Only a planetary spectral model is consistent with the spectroscopy, and we deduce a best-fit mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses). This means that CVSO 30 is the first system in which both a close-in and a wide planet candidate are found to have a common host star. The orbits of the two possible planets could not be more different: they have orbital periods of 10.76 hours and about 27000 years. The two orbits may have formed during a mutual catastrophic event of planet-planet scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا