ﻻ يوجد ملخص باللغة العربية
We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). We performed a deep u,g,r,i mapping and a simultaneous u+r monitoring of the region with CFHT/MegaCam in order to directly probe the accretion process from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range 0.1-2 Mo. About 40% are classical (accreting) T Tauri stars, based on various diagnostics (H_alpha, UV and IR excesses). The remaining non-accreting members define the (photospheric+chromospheric) reference UV emission level over which flux excess is detected and measured. We revise the membership status of cluster members based on UV accretion signatures and report a new population of 50 CTTS candidates. A large range of UV excess is measured for the CTTS population, varying from a few 0.1 to 3 mag. We convert these values to accretion luminosities and obtain mass accretion rates ranging from 1e-10 to 1e-7 Mo/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6sigma correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for upper limits, yields M_acc $propto$ M^{1.4+/-0.3}. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, much smaller than the observed spread. We suggest that a non-negligible age spread across the cluster may effectively contribute to the observed spread in accretion rates at a given mass. In addition, different accretion mechanisms (like, e.g., short-lived accretion bursts vs. more stable funnel-flow accretion) may be associated to different M_acc regimes.
We explore UV and optical variability signatures for several hundred members of NGC 2264 (3 Myr). We performed simultaneous u- and r-band monitoring over two full weeks with CFHT/MegaCam. About 750 young stars are probed; 40% of them are accreting. S
The low spin rates measured for solar-type stars at an age of a few Myr (~10% of the break-up velocity) indicate that some mechanism of angular momentum regulation must be at play in the early pre-main sequence. We characterize the rotation propertie
We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope IRAC and MIPS instruments and present a normalized classification scheme of young stellar objects in various color-color
We present a comprehensive photometric analysis of a young open cluster NGC 1960 (M36) along with the long-term variability study of this cluster. Based on the kinematic data of Gaia DR2, the membership probabilities of 3871 stars are ascertained in
Space photometric time series of the most massive members of the young open cluster NGC 2264 allow us to study their different sources of variability down to the millimagnitude level and permits a search for Slowly Pulsating B (SPB) type pulsation am