ترغب بنشر مسار تعليمي؟ اضغط هنا

Frictional figures of merit for single layered nanostructures

69   0   0.0 ( 0 )
 نشر من قبل Seymur Cahangirov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determined frictional figures of merit for a pair of layered honeycomb nanostructures, such as graphane, fluorographene, MoS$_2$ and WO$_2$ moving over each other, by carrying out ab-initio calculations of interlayer interaction under constant loading force. Using Prandtl-Tomlinson model we derived critical stiffness required to avoid stick-slip behavior. We showed that these layered structures have low critical stiffness even under high loading forces due to their charged surfaces repelling each other. The intrinsic stiffness of these materials exceed critical stiffness and thereby avoid the stick-slip regime and attain nearly dissipationless continuous sliding. Remarkably, tungsten dioxide displays much better performance relative to others and heralds a potential superlubricant. The absence of mechanical instabilities leading to conservative lateral forces is also confirmed directly by the simulations of sliding layers.

قيم البحث

اقرأ أيضاً

We study the thermal effects on the frictional properties of atomically thin sheets. We simulate a simple model based on the Prandtl-Tomlinson model that reproduces the layer dependence of friction and strengthening effects seen in AFM experiments. W e investigate sliding at constant speed as well as reversing direction. We also investigate contact aging: the changes that occur to the contact when the sliding stops completely. We compare the numerical results to analytical calculations based on Kramers rates. We find that there is a slower than exponential contact aging that weakens the contact and that we expect will be observable in experiments. We discuss the implications for sliding as well as aging experiments.
Topological phases of matter have revolutionized the fundamental understanding of band theory and hold great promise for next-generation technologies such as low-power electronics or quantum computers. Single-gap topologies have been extensively expl ored, and a large number of materials have been theoretically proposed and experimentally observed. These ideas have recently been extended to multi-gap topologies, characterized by invariants that arise by the momentum space braiding of band nodes that carry non-Abelian charges. However, the constraints placed by the Fermi-Dirac distribution to electronic systems have so far prevented the experimental observation of multi-gap topologies in real materials. Here, we show that multi-gap topologies and the accompanying phase transitions driven by braiding processes can be readily observed in the bosonic phonon spectra of known monolayer silicates. The associated braiding process can be controlled by means of an electric field and epitaxial strain, and involves, for the first time, more than three bands. Finally, we propose that these conversion processes can be tracked by following the evolution of the Raman spectrum, providing a clear signature for the experimental verification of multi-gap topologies.
In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that the structures have lower energy than their corresponding nanoribbon structures and are stable up to high temperatures (500 and 1000 K, for silicon and germanium tubes, respectively). Both tubes are semiconducting with small indirect band gaps, which can be significantly altered by both compressive and tensile strains. Large bandgap variations of almost 50% were observed for strain rates as small as 3%, suggesting possible applications in sensor devices. They also present high Youngs modulus values (0.25 and 0.15 TPa, respectively). TEM images were simulated to help the identification of these new structures.
The collective excitation spectrum of two-dimensional (2D) antimonene is calculated beyond the low energy continuum approximation. The dynamical polarizability is computed using a 6-orbitals tight-binding model that properly accounts for the band str ucture of antimonene in a broad energy range. Electron-electron interaction is considered within the random phase approximation. The obtained spectrum is rich, containing the standard intra-band 2D plasmon and a set of single inter-band modes. We find that spin-orbit interaction plays a fundamental role in the reconstruction of the excitation spectrum, with the emergence of novel inter-band branches in the continuum that interact with the plasmon.
498 - Jun Wang , Victor Aguilar , Le Li 2013
Single-crystalline alpha-Fe2O3 nanorings (short nanotubes) and nanotubes were synthesized by a hydrothermal method. High-resolution transmission electron microscope and selected-area electron diffraction confirm that the axial directions of both nano rings and nanotubes are parallel to the crystalline c-axis. What is intriguing is that the Morin transition occurs at about 210 K in the short nanotubes with a mean tube length of about 115 nm and a mean outer diameter of 169 nm while it disappears in the nanotubes with a mean tube length of about 317 nm and a mean outer diameter of 148 nm. Detailed analyses of magnetization data, x-ray diffraction spectra, and room-temperature Mossbauer spectra demonstrate that this very strong shape dependence of the Morin transition is intrinsic to hematite. We can quantitatively explain this intriguing shape dependence in terms of opposite signs of the surface magnetic anisotropy constants in the surface planes parallel and perpendicular to the c-axis (that is, K_parallel = -0.37 erg/cm^2 and K_perp = 0.42 erg/cm^{2}).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا