ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal Transport and Chemical Heterogeneity in Early Star Forming Systems

55   0   0.0 ( 0 )
 نشر من قبل Jeremy Ritter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To constrain the properties of the first stars with the chemical abundance patterns observed in metal-poor stars, one must identify any non-trivial effects that the hydrodynamics of metal dispersal can imprint on the abundances. We use realistic cosmological hydrodynamic simulations to quantify the distribution of metals resulting from one Population III supernova and from a small number of such supernovae exploding in close succession. Overall, supernova ejecta are highly inhomogeneously dispersed throughout the simulations. When the supernova bubbles collapse, quasi-virialized metal-enriched clouds, fed by fallback from the bubbles and by streaming of metal-free gas from the cosmic web, grow in the centers of the dark matter halos. Partial turbulent homogenization on scales resolved in the simulation is observed only in the densest clouds where the vortical time scales are short enough to ensure true homogenization on subgrid scales. However, the abundances in the clouds differ from the gross yields of the supernovae. Continuing the simulations until the cloud have gone into gravitational collapse, we predict that the abundances in second-generation stars will be deficient in the innermost mass shells of the supernova (if only one has exploded) or in the ejecta of the latest supernovae (when multiple have exploded). This indicates that hydrodynamics gives rise to biases complicating the identification of nucleosynthetic sources in the chemical abundance spaces of the surviving stars.

قيم البحث

اقرأ أيضاً

We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show 0.5 dex metallicity decrements in inner regions with enhanced star-formation activity. Th is behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sanchez Almeida et al. (2013) and interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications: (1) it proves that galaxies other than the local tadpoles present the same unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star-formation activity in the local Universe. We argue that the star-formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, are naturally interpreted as side effects of pristine gas infall. Alternatives to the metal poor gas accretion are examined too.
There is a large consensus that gas in high-$z$ galaxies is highly turbulent, because of a combination of stellar feedback processes and gravitational instabilities driven by mergers and gas accretion. In this paper, we present the analysis of a samp le of five Dusty Star Forming Galaxies (DSFGs) at $4 lesssim zlesssim 5$. Taking advantage of the magnifying power of strong gravitational lensing, we quantified their kinematic and dynamical properties from ALMA observations of their [CII] emission line. We combined the dynamical measurements obtained for these galaxies with those obtained from previous studies to build the largest sample of $z sim 4.5$ galaxies with high-quality data and sub-kpc spatial resolutions, so far. We found that all galaxies in the sample are dynamically cold, with rotation-to-random motion ratios, $V/sigma$, between 7 to 15. The relation between their velocity dispersions and their star-formation rates indicates that stellar feedback is sufficient to sustain the turbulence within these galaxies and no further mechanisms are needed. In addition, we performed a rotation curve decomposition to infer the relative contribution of the baryonic (gas, stars) and dark matter components to the total gravitational potentials. This analysis allowed us to compare the structural properties of the studied DSFGs with those of their descendants, the local early type galaxies. In particular, we found that five out of six galaxies of the sample show the dynamical signature of a bulge, indicating that the spheroidal component is already in place at $z sim 4.5$.
We report the discovery of 31 low-luminosity (-14.5 > M_{AB}(B) > -18.8), extreme emission line galaxies (EELGs) at 0.2 < z < 0.9 identified by their unusually high rest-frame equivalent widths (100 < EW[OIII] < 1700 A) as part of the VIMOS Ultra Dee p Survey (VUDS). VIMOS optical spectra of unprecedented sensitivity ($I_{AB}$ ~ 25 mag) along with multiwavelength photometry and HST imaging are used to investigate spectrophotometric properties of this unique sample and explore, for the first time, the very low stellar mass end (M* < 10^8 M$_{odot}$) of the luminosity-metallicity (LZR) and mass-metallicity (MZR) relations at z < 1. Characterized by their extreme compactness (R50 < 1 kpc), low stellar mass and enhanced specific star formation rates (SFR/M* ~ 10^{-9} - 10^{-7} yr^{-1}), the VUDS EELGs are blue dwarf galaxies likely experiencing the first stages of a vigorous galaxy-wide starburst. Using T_e-sensitive direct and strong-line methods, we find that VUDS EELGs are low-metallicity (7.5 < 12+log(O/H) < 8.3) galaxies with high ionization conditions, including at least three EELGs showing HeII 4686A emission and four EELGs of extremely metal-poor (<10% solar) galaxies. The LZR and MZR followed by EELGs show relatively large scatter, being broadly consistent with the extrapolation toward low luminosity and mass from previous studies at similar redshift. However, we find evidences that galaxies with younger and more vigorous star formation -- as characterized by their larger EWs, ionization and sSFR -- tend to be more metal-poor at a given stellar mass.
404 - Andrea Negri 2015
High resolution 2D hydrodynamical simulations describing the evolution of the hot ISM in axisymmetric two-component models of early-type galaxies well reproduced the observed trends of the X-ray luminosity ($L_mathrm{x}$) and temperature ($T_mathrm{x }$) with galaxy shape and rotation, however they also revealed the formation of an exceedingly massive cooled gas disc in rotating systems. In a follow-up of this study, here we investigate the effects of star formation in the disc, including the consequent injection of mass, momentum and energy in the pre-existing interstellar medium. It is found that subsequent generations of stars originate one after the other in the equatorial region; the mean age of the new stars is $> 5$ Gyr, and the adopted recipe for star formation can reproduce the empirical Kennicutt-Schmidt relation. The results of the previous investigation without star formation, concerning $L_mathrm{x}$ and $T_mathrm{x}$ of the hot gas, and their trends with galactic shape and rotation, are confirmed. At the same time, the consumption of most of the cold gas disc into new stars leads to more realistic final systems, whose cold gas mass and star formation rate agree well with those observed in the local universe. In particular, our models could explain the observation of kinematically aligned gas in massive, fast-rotating early-type galaxies.
142 - C. Pfrommer 2017
Star forming galaxies emit GeV- and TeV-gamma rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving mesh code Arepo to perform magneto -hydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky-Way like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is calorimetrically lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا