ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of vacancy-induced suppression of electronic cooling in defected graphene

111   0   0.0 ( 0 )
 نشر من قبل Xiaosong Wu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies of electron-phonon interaction in impure graphene have found that static disorder can give rise to an enhancement of electronic cooling. We investigate the effect of dynamic disorder and observe over an order of magnitude suppression of electronic cooling compared with clean graphene. The effect is stronger in graphene with more vacancies, confirming its vacancy-induced nature. The dependence of the coupling constant on the phonon temperature implies its link to the dynamics of disorder. Our study highlights the effect of disorder on electron-phonon interaction in graphene. In addition, the suppression of electronic cooling holds great promise for improving the performance of graphene-based bolometer and photo-detector devices.

قيم البحث

اقرأ أيضاً

We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. Using a mean field Hubbard model, we study the appearance of magnetic textures associated to removing a single atom (vacancy) an d multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based upon Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin $S$ of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance there is maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
In this theoretical study, we explore the manner in which the quantum correction due to weak localization is suppressed in weakly-disordered graphene, when it is subjected to the application of a non-zero voltage. Using a nonequilibrium Green functio n approach, we address the scattering generated by the disorder up to the level of the maximally crossed diagrams, hereby capturing the interference among different, impurity-defined, Feynman paths. Our calculations of the charge current, and of the resulting differential conductance, reveal the logarithmic divergence typical of weak localization in linear transport. The main finding of our work is that the applied voltage suppresses the weak localization contribution in graphene, by introducing a dephasing time that decreases inversely with increasing voltage.
Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy a nd can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 $mu$A at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.
The observation of intrinsic magnetic order in graphene and graphene-based materials relies on the formation of magnetic moments and a sufficiently strong mutual interaction. Vacancies are arguably considered the primary source of magnetic moments. H ere we present an in-depth density functional theory study of the spin-resolved electronic structure of (monoatomic) vacancies in graphene and bilayer graphene. We use two different methodologies: supercell calculations with the SIESTA code and cluster-embedded calculations with the ALACANT package. Our results are conclusive: The vacancy-induced extended $pi$ magnetic moments, which present long-range interactions and are capable of magnetic ordering, vanish at any experimentally relevant vacancy concentration. This holds for $sigma$-bond passivated and un-passivated reconstructed vacancies, although, for the un-passivated ones, the disappearance of the $pi$ magnetic moments is accompanied by a very large magnetic susceptibility. Only for the unlikely case of a full $sigma$-bond passivation, preventing the reconstruction of the vacancy, a full value of 1$mu_B$ for the $pi$ extended magnetic moment is recovered for both mono and bilayer cases. Our results put on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in graphene-based systems, while still leaving the door open to $sigma$-type paramagnetism.
In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا