ترغب بنشر مسار تعليمي؟ اضغط هنا

Voronoi Game on Graphs

178   0   0.0 ( 0 )
 نشر من قبل Sayan Bandyapadhyay
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

textit{Voronoi game} is a geometric model of competitive facility location problem played between two players. Users are generally modeled as points uniformly distributed on a given underlying space. Each player chooses a set of points in the underlying space to place their facilities. Each user avails service from its nearest facility. Service zone of a facility consists of the set of users which are closer to it than any other facility. Payoff of each player is defined by the quantity of users served by all of its facilities. The objective of each player is to maximize their respective payoff. In this paper we consider the two players {it Voronoi game} where the underlying space is a road network modeled by a graph. In this framework we consider the problem of finding $k$ optimal facility locations of Player 2 given any placement of $m$ facilities by Player 1. Our main result is a dynamic programming based polynomial time algorithm for this problem on tree network. On the other hand, we show that the problem is strongly $mathcal{NP}$-complete for graphs. This proves that finding a winning strategy of P2 is $mathcal{NP}$-complete. Consequently, we design an $1-frac{1}{e}$ factor approximation algorithm, where $e approx 2.718$.



قيم البحث

اقرأ أيضاً

The $r$-th iterated line graph $L^{r}(G)$ of a graph $G$ is defined by: (i) $L^{0}(G) = G$ and (ii) $L^{r}(G) = L(L^{(r- 1)}(G))$ for $r > 0$, where $L(G)$ denotes the line graph of $G$. The Hamiltonian Index $h(G)$ of $G$ is the smallest $r$ such th at $L^{r}(G)$ has a Hamiltonian cycle. Checking if $h(G) = k$ is NP-hard for any fixed integer $k geq 0$ even for subcubic graphs $G$. We study the parameterized complexity of this problem with the parameter treewidth, $tw(G)$, and show that we can find $h(G)$ in time $O*((1 + 2^{(omega + 3)})^{tw(G)})$ where $omega$ is the matrix multiplication exponent and the $O*$ notation hides polynomial factors in input size. The NP-hard Eulerian Steiner Subgraph problem takes as input a graph $G$ and a specified subset $K$ of terminal vertices of $G$ and asks if $G$ has an Eulerian (that is: connected, and with all vertices of even degree.) subgraph $H$ containing all the terminals. A second result (and a key ingredient of our algorithm for finding $h(G)$) in this work is an algorithm which solves Eulerian Steiner Subgraph in $O*((1 + 2^{(omega + 3)})^{tw(G)})$ time.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions neede d to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
We study the algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. We discover that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from Chordal-ke. We identify a large class of optimization problems on Chordal-ke that admit algorithms with the typical running time 2^{O(sqrt{k}log k)}cdot n^{O(1)}. Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal-ke when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of Chordal-ke graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on Chordal-ke graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on Chordal-ke graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of Chordal-ke, namely, Interval-ke and Split-ke graphs.
We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the support graph of the solution of the Held-Karp linear programming relaxation has bounded orientable genus.
179 - Vijay V. Vazirani 2021
The general adwords problem has remained largely unresolved. We define a subcase called {em $k$-TYPICAL}, $k in Zplus$, as follows: the total budget of all the bidders is sufficient to buy $k$ bids for each bidder. This seems a reasonable assumption for a typical instance, at least for moderate values of $k$. We give a randomized online algorithm, achieving a competitive ratio of $left(1 - {1 over e} - {1 over k} right)$, for this problem. We also give randomized online algorithms for other special cases of adwords. Another subcase, when bids are small compared to budgets, has been of considerable practical significance in ad auctions cite{MSVV}. For this case, we give an optimal randomized online algorithm achieving a competitive ratio of $left(1 - {1 over e} right)$. Previous algorithms for this case were based on LP-duality; the impact of our new approach remains to be seen. The key to these results is a simplification of the proof for RANKING, the optimal algorithm for online bipartite matching, given in cite{KVV}. Our algorithms for adwords can be seen as natural extensions of RANKING.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا