ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational tests of non-adiabatic Chaplygin gas

446   0   0.0 ( 0 )
 نشر من قبل Saulo Carneiro
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a previous paper it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter $omega = -1$. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different samples of SNe Ia, namely the Constitution and SDSS compilations, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter $alpha$. The joint analysis best fit gives $alpha approx - 0.5$, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The $Lambda$CDM model, equivalent to $alpha = 0$, stands outside the $3sigma$ confidence interval. This result is still valid if we use, as supernovae samples, the SDSS and Union2.1 compilations calibrated with the SALT2 fitter.


قيم البحث

اقرأ أيضاً

We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are $A_{s}=0.73^{+0.06}_{-0.06}$ ($1sigma$) $^{+0.09}_{-0.09}$ $(2sigma)$, $alpha=-0.09^{+0.15}_{-0.12}$ ($1sigma$) $^{+0.26}_{-0.19}$ $(2sigma)$. Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is $w_{0de}=-0.96$ with the $1sigma$ confidence level $-0.91geq w_{0de}geq-1.00$.
In this paper we consider a cosmological model whose main components are a scalar field and a generalized Chaplygin gas. We obtain an exact solution for a flat arbitrary potential. This solution have the right dust limit when the Chaplygin parameter $Arightarrow 0$. We use the dynamical systems approach in order to describe the cosmological evolution of the mixture for an exponential self-interacting scalar field potential. We study the scalar field with an arbitrary self-interacting potential using the Method of $f$-devisers. Our results are illustrated for the special case of a coshlike potential. We find that usual scalar-field-dominated and scaling solutions cannot be late-time attractors in the presence of the Chaplygin gas (with $alpha>0$). We recover the standard results at the dust limit ($Arightarrow 0$). In particular, for the exponential potential, the late-time attractor is a pure generalized Chaplygin solution mimicking an effective cosmological constant. In the case of arbitrary potentials, the late-time attractors are de Sitter solutions in the form of a cosmological constant, a pure generalized Chaplygin solution or a continuum of solutions, when the scalar field and the Chaplygin gas densities are of the same orders of magnitude. The different situations depend on the parameter choices.
Yes, but only for a parameter value that makes it almost coincide with the standard model. We reconsider the cosmological dynamics of a generalized Chaplygin gas (gCg) which is split into a cold dark matter (CDM) part and a dark energy (DE) component with constant equation of state. This model, which implies a specific interaction between CDM and DE, has a $Lambda$CDM limit and provides the basis for studying deviations from the latter. Including matter and radiation, we use the (modified) CLASS code cite{class} to construct the CMB and matter power spectra in order to search for a gCg-based concordance model that is in agreement with the SNIa data from the JLA sample and with recent Planck data. The results reveal that the gCg parameter $alpha$ is restricted to $|alpha|lesssim 0.05$, i.e., to values very close to the $Lambda$CDM limit $alpha =0$. This excludes, in particular, models in which DE decays linearly with the Hubble rate.
Motivated by two seminal models proposed to explain the Universe acceleration, this paper is devoted to study a hybrid model which is constructed through a generalized Chaplygin gas with the addition of a bulk viscosity. We call the model a Viscous G eneralized Chaplygin Gas (VGCG) and its free parameters are constrained through several cosmological data like the Observational Hubble Parameter, Type Ia Supernovae, Baryon Acoustic Oscillations, Strong Lensing Systems, HII Galaxies and using Joint Bayesian analysis. In addition, we implement a Om-diagnostic to analyze the VGCC dynamics and its difference with the standard cosmological model. The hybrid model shows important differences when compared with the standard cosmological model. Finally, based on our Joint analysis we find that the VGCG could be an interesting candidate to alleviate the well-known Hubble constant tension.
We compare the WMAP temperature power spectrum and SNIa data to models with a generalized Chaplygin gas as dark energy. The generalized Chaplygin gas is a component with an exotic equation of state, p_X=-A/rho^alpha_X (a polytropic gas with negative constant and exponent). Our main result is that, restricting to a flat universe and to adiabatic pressure perturbations for the generalized Chaplygin gas, the constraints at 95% CL to the present equation of state w_X = p_X / rho_X and to the parameter alpha are -1leq w_X < -0.8, 0 leq alpha <0.2, respectively. Moreover, we show that a Chaplygin gas (alpha =1) as a candidate for dark energy is ruled out by our analysis at more than the 99.99% CL. A generalized Chaplygin gas as a unified dark matter candidate (Omega_{CDM}=0) appears much less likely than as a dark energy model, although its chi^2 is only two sigma away from the expected value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا