ترغب بنشر مسار تعليمي؟ اضغط هنا

Metallic Surface States Probed Within the Microwave Skin Depth of the Putative Topological Insulator YBiPt Compound

52   0   0.0 ( 0 )
 نشر من قبل Guilherme Gorgen Lesseux
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron Spin Resonance (ESR) experiments of diluted Nd$^{3+}$ ions in the claimed topological insulator (TI) YBiPt are reported. Powdered samples with grain size from $approx$ 100 $mu$m to $approx$ 2,000 $mu$m were investigated. At low temperatures, 1.6 K $lesssim$ emph{T} $lesssim$ 20 K, the X-band ($9.4$ GHz) ESR spectra show a emph{g}-value of 2.66(4) and a Dysonian resonance lineshape which shows a remarkably unusual temperature, concentration, microwave power and particle size dependence. These results indicate that metallic and insulating behavior coexist within a skin depth of $delta approx$ 15 $mu$m. Furthermore, the Nd$^{3+}$ spin dynamics in YBiPt are consistent with the existence of a emph{phonon-bottleneck process} which allows the energy absorbed by the Nd$^{3+}$ ions at resonance to reach the thermal bath via the conduction electrons in the metallic surface states of YBiPt. These results are discussed in terms of the claimed topological semi-metal properties of YBiPt.

قيم البحث

اقرأ أيضاً

The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confineme nt, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
Hexagonal warping provides an anisotropy to the dispersion curves of the helical Dirac fermions that exist at the surface of a topological insulator. A sub-dominant quadratic in momentum term leads to an asymmetry between conduction and valence band. A gap can also be opened through magnetic doping. We show how these various modifications to the Dirac spectrum change the polarization function of the surface states and employ our results to discuss their effect on the plasmons. In the long wavelength limit, the plasmon dispersion retains its square root dependence on its momentum, $boldsymbol{q}$, but its slope is modified and it can acquire a weak dependence on the direction of $boldsymbol{q}$. Further, we find the existence of several plasmon branches, one which is damped for all values of $boldsymbol{q}$, and extract the plasmon scattering rate for a representative case.
We explore a combined effect of hexagonal warping and of finite effective mass on both the tunneling density of electronic states (TDOS) and structure of Landau levels (LLs) of 3D topological insulators. We find the increasing warping to transform th e square-root van Hove singularity into a logarithmic one. For moderate warping an additional logarithmic singularity and a jump in the TDOS appear. This phenomenon is experimentally verified by direct measurements of the local TDOS in Bi$_2$Te$_3$. By combining the perturbation theory and the WKB approximation we calculate the LLs in the presence of hexagonal warping. We predict that due to the degeneracy removal the evolution of LLs in the magnetic field is drastically modified.
Recently, the intrinsic magnetic topological insulator MnBi$_2$Te$_4$ has attracted great attention. It has an out-of-plane antiferromagnetic order, which is believed to open a sizable energy gap in the surface states. This gap, however, was not alwa ys observable in the latest angle-resolved photoemission spectroscopy (ARPES) experiments. To address this issue, we analytically derive an effective model for the two-dimensional (2D) surface states by starting from a three-dimensional (3D) Hamiltonian for bulk MnBi$_2$Te$_4$ and taking into account the spatial profile of the bulk magnetization. Our calculations suggest that the diminished surface gap may be caused by a much smaller and more localized intralayer ferromagnetic order. In addition, we calculate the spatial distribution and penetration depth of the surface states, which indicates that the surface states are mainly embedded in the first two septuple layers from the terminating surface. From our analytical results, the influence of the bulk parameters on the surface states can be found explicitly. Furthermore, we derive a $bf{k}cdot bf{p}$ model for MnBi$_2$Te$_4$ thin films and show the oscillation of the Chern number between odd and even septuple layers. Our results will be helpful for the ongoing explorations of the MnBi$_x$Te$_y$ family.
Recently, the topological classification of electronic states has been extended to a new class of matter known as topological crystalline insulators. Similar to topological insulators, topological crystalline insulators also have spin-momentum locked surface states; but they only exist on specific crystal planes that are protected by crystal reflection symmetry. Here, we report an ultra-low temperature scanning tunneling microscopy and spectroscopy study on topological crystalline insulator SnTe nanoplates grown by molecular beam epitaxy. We observed quasiparticle interference patterns on the SnTe (001) surface that can be interpreted in terms of electron scattering from the four Fermi pockets of the topological crystalline insulator surface states in the first surface Brillouin zone. A quantitative analysis of the energy dispersion of the quasiparticle interference intensity shows two high energy features related to the crossing point beyond the Lifshitz transition when the two neighboring low energy surface bands near the point merge. A comparison between the experimental and computed quasiparticle interference patterns reveals possible spin texture of the surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا