ﻻ يوجد ملخص باللغة العربية
We extract the Glauber divergences from the spectator amplitudes for two-body hadronic decays $B to M_1 M_2$ in the $k_T$ factorization theorem, where $M_2$ denotes the meson emitted at the weak vertex. Employing the eikonal approximation, the divergences are factorized into the corresponding Glauber phase factors associated with the $M_1$ and $M_2$ mesons. It is observed that the latter factor enhances the spectator contribution to the color-suppressed tree amplitude by modifying the interference pattern between the two involved leading-order diagrams. The first factor rotates the enhanced spectator contribution by a phase, and changes its interference with other tree diagrams. The above Glauber effects are compared with the mechanism in elastic rescattering among various $M_1 M_2$ final states, which has been widely investigated in the literature. We postulate that only the Glauber effect associated with a pion is significant, due to its special role as a $q bar q$ bound state and as a pseudo Nambu-Goldstone boson simultaneously. Treating the Glauber phases as additional inputs in the perturbative QCD (PQCD) approach, we find a good fit to all the $B to pipi$, $pirho$, $piomega$, and $pi K$ data, and resolve the long-standing $pipi$ and $pi K$ puzzles. The nontrivial success of this modified PQCD formalism is elaborated.
The scattering amplitude of D Pi at the energy of the B mass can be calculated using Regge theory. Recent papers have used this to calculate the final state strong phases in the decays B to D Pi. It is argued that while the Regge amplitude can yield
We analyze the asymmetry in the partial widths for the decays $B^{pm} to M {bar M} pi^{pm}$ ($ M = pi^+, K ^+, pi^0, eta$), which results from the interference of the nonresonant decay amplitude with the resonant amplitude for $B^{pm} to chi_{c0} pi^
Two sources of strong phases in the decays $B$ to $pipi$ are identified: (1) quasi-elastic scattering corresponding to intermediate states like $pipi$ and $rhorho$, (2) ``$cbar{c}$ corresponding to intermediate states like $Dbar{D}$ and $D^{*}bar{D}^
While the factorization assumption works well for many two-body nonleptonic $B$ meson decay modes, the recent measurement of $bar Bto D^{(*)0}M^0$ with $M=pi$, $rho$ and $omega$ shows large deviation from this assumption. We analyze the $Bto D^{(*)}M
The observed strong phase difference of 30^{o} between I=(3/2) and I=(1/2) final states for the decay B to D Pi is analyzed in terms of rescattering like D^{∗}Pi to D Pi, etc. It is concluded that for the decay B^{o}to D^{+} Pi^{-} the strong p