ترغب بنشر مسار تعليمي؟ اضغط هنا

Isomorphism classes of association schemes induced by Hadamard matrices

244   0   0.0 ( 0 )
 نشر من قبل Kijung Kim
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Every Hadamard matrix $H$ of order $n > 1$ induces a graph with $4n$ vertices, called the Hadamard graph $Gamma(H)$ of $H$. Since $Gamma(H)$ is a distance-regular graph with diameter $4$, it induces a $4$-class association scheme $(Omega, S)$ of order $4n$. In this article we deal with fission schemes of $(Omega, S)$ under certain conditions, and for such a fission scheme we estimate the number of isomorphism classes with the same intersection numbers as the fission scheme.



قيم البحث

اقرأ أيضاً

In this paper, we obtain a number of new infinite families of Hadamard matrices. Our constructions are based on four new constructions of difference families with four or eight blocks. By applying the Wallis-Whiteman array or the Kharaghani array to the difference families constructed, we obtain new Hadamard matrices of order $4(uv+1)$ for $u=2$ and $vin Phi_1cup Phi_2 cup Phi_3 cup Phi_4$; and for $uin {3,5}$ and $vin Phi_1cup Phi_2 cup Phi_3$. Here, $Phi_1={q^2:qequiv 1pmod{4}mbox{ is a prime power}}$, $Phi_2={n^4in mathbb{N}:nequiv 1pmod{2}} cup {9n^4in mathbb{N}:nequiv 1pmod{2}}$, $Phi_3={5}$ and $Phi_4={13,37}$. Moreover, our construction also yields new Hadamard matrices of order $8(uv+1)$ for any $uin Phi_1cup Phi_2$ and $vin Phi_1cup Phi_2 cup Phi_3$.
107 - Koji Momihara , Qing Xiang 2018
In this paper, we generalize classical constructions of skew Hadamard difference families with two or four blocks in the additive groups of finite fields given by Szekeres (1969, 1971), Whiteman (1971) and Wallis-Whiteman (1972). In particular, we sh ow that there exists a skew Hadamard difference family with $2^{u-1}$ blocks in the additive group of the finite field of order $q^e$ for any prime power $qequiv 2^u+1,({mathrm{mod, , }2^{u+1}})$ with $uge 2$ and any positive integer $e$. In the aforementioned work of Szekeres, Whiteman, and Wallis-Whiteman, the constructions of skew Hadamard difference families with $2^{u-1}$ ($u=2$ or $3$) blocks in $({mathbb F}_{q^e},+)$ depend on the exponent $e$, with $eequiv 1,2,$ or $3,({mathrm{mod, , }4})$ when $u=2$, and $eequiv 1,({mathrm{mod, , }2})$ when $u=3$, respectively. Our more general construction, in particular, removes the dependence on $e$. As a consequence, we obtain new infinite families of skew Hadamard matrices.
If $q = p^n$ is a prime power, then a $d$-dimensional emph{$q$-Butson Hadamard matrix} $H$ is a $dtimes d$ matrix with all entries $q$th roots of unity such that $HH^* = dI_d$. We use algebraic number theory to prove a strong constraint on the dimens ion of a circulant $q$-Butson Hadamard matrix when $d = p^m$ and then explicitly construct a family of examples in all possible dimensions. These results relate to the long-standing circulant Hadamard matrix conjecture in combinatorics.
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for the expansion of a polynomial in terms of m-polynomials. We conclude this article by an implementation in MATHEMATICA of m-polynomials and the results obtained for them.
Recent classification of $frac{3}{2}$-transitive permutation groups leaves us with three infinite families of groups which are neither $2$-transitive, nor Frobenius, nor one-dimensional affine. The groups of the first two families correspond to speci al actions of ${mathrm{PSL}}(2,q)$ and ${mathrm{PGamma L}}(2,q),$ whereas those of the third family are the affine solvable subgroups of ${mathrm{AGL}}(2,q)$ found by D. Passman in 1967. The association schemes of the groups in each of these families are known to be pseudocyclic. It is proved that apart from three particular cases, each of these exceptional pseudocyclic schemes is characterized up to isomorphism by the tensor of its $3$-dimensional intersection numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا