ترغب بنشر مسار تعليمي؟ اضغط هنا

SPEED: the Segmented Pupil Experiment for Exoplanet Detection

67   0   0.0 ( 0 )
 نشر من قبل Patrice Martinez Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Searching for nearby exoplanets with direct imaging is one of the major scientific drivers for both space and ground-based programs. While the second generation of dedicated high-contrast instruments on 8-m class telescopes is about to greatly expand the sample of directly imaged planets, exploring the planetary parameter space to hitherto-unseen regions ideally down to Terrestrial planets is a major technological challenge for the forthcoming decades. This requires increasing spatial resolution and significantly improving high contrast imaging capabilities at close angular separations. Segmented telescopes offer a practical path toward dramatically enlarging telescope diameter from the ground (ELTs), or achieving optimal diameter in space. However, translating current technological advances in the domain of high-contrast imaging for monolithic apertures to the case of segmented apertures is far from trivial. SPEED (the segmented pupil experiment for exoplanet detection) is a new instrumental facility in development at the Lagrange laboratory for enabling strategies and technologies for high-contrast instrumentation with segmented telescopes. SPEED combines wavefront control including precision segment phasing architectures, wavefront shaping using two sequential high order deformable mirrors for both phase and amplitude control, and advanced coronagraphy struggled to very close angular separations (PIAACMC). SPEED represents significant investments and technology developments towards the ELT area and future spatial missions, and will offer an ideal cocoon to pave the road of technological progress in both phasing and high-contrast domains with complex/irregular apertures. In this paper, we describe the overall design and philosophy of the SPEED bench.

قيم البحث

اقرأ أيضاً

164 - K. Enya , L. Abe 2011
We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous works on binary shaped pupil mask by citet{Kasdin2005} and citet{Vanderbei1999}. Solutions with multi-barcode masks wh ich skip over the obscuration are shown for various types of pupil of telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows post-processing removal of diffraction tails and provides a 360$^{circ}$ continuous discovery angle. It is suggested that the presented concept offers solutions which potentially allow large telescopes with segmented pupil in future to be used as platforms for an coronagraph.
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multiwavelength suite of instruments. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the community is assessing as part of NASAs Exoplanet Exploration Program Segmented aperture coronagraph design and analysis (SCDA) team. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. This has enabled us to empirically establish relationships between planet throughput and telescope aperture geometry, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors. We also investigate the combination of APLC with wavefront control or complex focal plane masks to improve inner working angle and throughput. Preliminary scientific yield evaluations based on design reference mission simulations indicate the APLC is a very competitive concept for surveying the local exoEarth population with a mission like LUVOIR.
Precision wavefront control on future segmented-aperture space telescopes presents significant challenges, particularly in the context of high-contrast exoplanet direct imaging. We present a new wavefront control architecture that translates the grou nd-based artificial guide star concept to space with a laser source aboard a second spacecraft, formation flying within the telescope field-of-view. We describe the motivating problem of mirror segment motion and develop wavefront sensing requirements as a function of guide star magnitude and segment motion power spectrum. Several sample cases with different values for transmitter power, pointing jitter, and wavelength are presented to illustrate the advantages and challenges of having a non-stellar-magnitude noise limited wavefront sensor for space telescopes. These notional designs allow increased control authority, potentially relaxing spacecraft stability requirements by two orders of magnitude, and increasing terrestrial exoplanet discovery space by allowing high-contrast observations of stars of arbitrary brightness.
The Exoplanet Imaging Data Challenge is a community-wide effort meant to offer a platform for a fair and common comparison of image processing methods designed for exoplanet direct detection. For this purpose, it gathers on a dedicated repository (Ze nodo), data from several high-contrast ground-based instruments worldwide in which we injected synthetic planetary signals. The data challenge is hosted on the CodaLab competition platform, where participants can upload their results. The specifications of the data challenge are published on our website. The first phase, launched on the 1st of September 2019 and closed on the 1st of October 2020, consisted in detecting point sources in two types of common data-set in the field of high-contrast imaging: data taken in pupil-tracking mode at one wavelength (subchallenge 1, also referred to as ADI) and multispectral data taken in pupil-tracking mode (subchallenge 2, also referred to as ADI mSDI). In this paper, we describe the approach, organisational lessons-learnt and current limitations of the data challenge, as well as preliminary results of the participants submissions for this first phase. In the future, we plan to provide permanent access to the standard library of data sets and metrics, in order to guide the validation and support the publications of innovative image processing algorithms dedicated to high-contrast imaging of planetary systems.
74 - Olivier Guyon 2013
High-precision astrometry can identify exoplanets and measure their orbits and masses, while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-microarcsecond accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا