ﻻ يوجد ملخص باللغة العربية
We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope (SE) supernova SN 2010as. Spectroscopic peculiarities, such as initially weak helium features and low expansion velocities with a nearly flat evolution, place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name flat-velocity Type IIb. The flat velocity evolution---which occurs at different levels between 6000 and 8000 km/s for different SNe---suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival HST images we associate SN 2010as with a massive cluster and derive a progenitor age of ~6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modelling, on the contrary, indicates the pre-explosion mass was relatively low, of ~4 M_sol. The seeming contradiction between an young age and low pre-SN mass may be solved by a massive interacting binary progenitor.
The ejecta velocities of type-Ia supernovae (SNe Ia), as measured by the Si II $lambda 6355$ line, have been shown to correlate with other supernova properties, including color and standardized luminosity. We investigate these results using the Found
Only a few cases of type Ic supernovae (SNe) with high-velocity ejecta have been discovered and studied. Here we present our analysis of radio and X-ray observations of a Type Ic SN, PTF12gzk. The radio emission rapidly declined less than 10 days aft
High-velocity features (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical photospheric-velocity features (PVFs). The PVFs are absorpti
We present new Hubble Space Telescope (HST) multi-epoch ultraviolet (UV) spectra of the bright Type IIb SN 2013df, and undertake a comprehensive anal- ysis of the set of four Type IIb supernovae for which HST UV spectra are available (SN 1993J, SN 20
Type IIb supernovae (SNe IIb) present a unique opportunity for investigating the evolutionary channels and mechanisms governing the evolution of stripped-envelope SN progenitors due to a variety of observational constraints available. Comparison of t