ترغب بنشر مسار تعليمي؟ اضغط هنا

An Example of Time Reversal Invariant Kerr Effect

189   0   0.0 ( 0 )
 نشر من قبل Alberto Cortijo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alberto Cortijo




اسأل ChatGPT حول البحث

Here we describe how certain classes of two dimensional topological insulators, including the CdTe$/$HgTe quantum wells, display a new type of optical activity in two dimensions similar to the magneto-optical Kerr effect in the quantum Hall effect. This optical activity is characterized by a genuine Kerr angle and it is compatible with time reversal symmetry, being thus fundamentally different to other known types of time reversal invariant optical activity. The term responsible of such optical activity, having the form of $(mathbf{E}cdotpartialmathbf{B}/partial t-mathbf{B}cdotpartialmathbf{E}/partial t)$, can be considered a time reversal invariant counterpart of the magneto-electric term $mathbf{E}cdotmathbf{B}$. The microscopical origin of this response is a chiral non-minimal coupling between electrons and the external electromagnetic field. This optical activity constitutes a proof of principle that there is possible to find systems that are time reversal invariant displaying a genuine Kerr effect.

قيم البحث

اقرأ أيضاً

Charge-density waves (CDWs) in Weyl semimetals (WSMs) have been shown to induce an exotic axionic insulating phase in which the sliding mode (phason) of the CDW acts as a dynamical axion field, giving rise to a large positive magneto-conductance. In this work, we predict that dynamical strain can induce a bulk orbital magnetization in time-reversal- (TR-) invariant WSMs that are gapped by a CDW. We term this effect the dynamical piezomagnetic effect (DPME). Unlike in [J. Gooth et al, Nature 575, 315 (2019)], the DPME introduced in this work occurs in a bulk-constant (i.e., static and spatially homogeneous in the bulk) CDW, and does not rely on fluctuations, such as a phason. By studying the low-energy effective theory and a minimal tight-binding (TB) model, we find that the DPME originates from an effective valley axion field that couples the electromagnetic gauge field with a strain-induced pseudo-gauge field. We further find that the DPME has a discontinuous change at a critical value of the phase of the CDW order parameter. We demonstrate that, when there is a jump in the DPME, the surface of the system undergoes a topological quantum phase transition (TQPT), while the bulk remains gapped. Hence, the DPME provides a bulk signature of the boundary TQPT in a TR-invariant Weyl-CDW.
We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term $t$, a chemical potential $mu$, an extended $s$-wave pairing $Delta$ and spin-orbit coupling $lambda$. We show that f or $|Delta|=|lambda|$, $mu=t=0$, the model can be solved exactly defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we correct some statements related with the so called time-reversal anomaly. Addition of a small hopping term for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains with numerical results %for a small chain obtaining good agreement.
Two-dimensional (2D) topological electronic insulators are known to give rise to gapless edge modes, which underlie low energy dynamics, including electrical and thermal transport. This has been thoroughly investigated in the context of quantum Hall phases, and time-reversal invariant topological insulators. Here we study the edge of a 2D, topologically trivial insulating phase, as a function of the strength of the electronic interactions and the steepness of the confining potential. For sufficiently smooth confining potentials, alternating compressible and incompressible stripes appear at the edge. Our findings signal the emergence of gapless edge modes which may give rise to finite conductance at the edge. This would suggest a novel scenario of a non-topological metal-insulator transition in clean 2D systems. The incompressible stripes appear at commensurate fillings and may exhibit broken translational invariance along the edge in the form of charge density wave ordering. These are separated by structureless compressible stripes.
Inspired by the discovery of quantum hall effect and topological insulator, topological properties of classical waves start to draw worldwide attention. Topological non-trivial bands characterized by non-zero Chern numbers are realized with external magnetic field induced time reversal symmetry breaking or dynamic modulation. Due to the absence of Faraday-like effect, the breaking of time reversal symmetry in an acoustic system is commonly realized with moving background fluids, and hence drastically increases the engineering complexity. Here we show that we can realize effective inversion symmetry breaking and effective gauge field in a reduced two-dimensional system by structurally engineering interlayer couplings, achieving an acoustic analog of the topological Haldane model. We then find and demonstrate unidirectional backscattering immune edge states. We show that the synthetic gauge field is closely related to the Weyl points in the three-dimensional band structure.
Time-reversal-invariant topological superconductor (TRITOPS) wires host Majorana Kramers pairs that have been predicted to mediate a fractional Josephson effect with $4pi$ periodicity in the superconducting phase difference. We explore the TRITOPS fr actional Josephson effect in the presence of time-dependent `local mixing perturbations that instantaneously preserve time-reversal symmetry. Specifically, we show that just as such couplings render braiding of Majorana Kramers pairs non-universal, the Josephson current becomes either aperiodic or $2pi$-periodic (depending on conditions that we quantify) unless the phase difference is swept sufficiently quickly. We further analyze topological superconductors with $mathcal{T}^2 = +1$ time-reversal symmetry and reveal a rich interplay between interactions and local mixing that can be experimentally probed in nanowire arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا