ترغب بنشر مسار تعليمي؟ اضغط هنا

An empirical likelihood approach for symmetric $alpha$-stable processes

96   0   0.0 ( 0 )
 نشر من قبل Fumiya Akashi
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Empirical likelihood approach is one of non-parametric statistical methods, which is applied to the hypothesis testing or construction of confidence regions for pivotal unknown quantities. This method has been applied to the case of independent identically distributed random variables and second order stationary processes. In recent years, we observe heavy-tailed data in many fields. To model such data suitably, we consider symmetric scalar and multivariate $alpha$-stable linear processes generated by infinite variance innovation sequence. We use a Whittle likelihood type estimating function in the empirical likelihood ratio function and derive the asymptotic distribution of the empirical likelihood ratio statistic for $alpha$-stable linear processes. With the empirical likelihood statistic approach, the theory of estimation and testing for second order stationary processes is nicely extended to heavy-tailed data analyses, not straightforward, and applicable to a lot of financial statistical analyses.



قيم البحث

اقرأ أيضاً

103 - Meng Yuan , Pengfei Li , 2021
The density ratio model (DRM) provides a flexible and useful platform for combining information from multiple sources. In this paper, we consider statistical inference under two-sample DRMs with additional parameters defined through and/or additional auxiliary information expressed as estimating equations. We examine the asymptotic properties of the maximum empirical likelihood estimators (MELEs) of the unknown parameters in the DRMs and/or defined through estimating equations, and establish the chi-square limiting distributions for the empirical likelihood ratio (ELR) statistics. We show that the asymptotic variance of the MELEs of the unknown parameters does not decrease if one estimating equation is dropped. Similar properties are obtained for inferences on the cumulative distribution function and quantiles of each of the populations involved. We also propose an ELR test for the validity and usefulness of the auxiliary information. Simulation studies show that correctly specified estimating equations for the auxiliary information result in more efficient estimators and shorter confidence intervals. Two real-data examples are used for illustrations.
Statistical methods with empirical likelihood (EL) are appealing and effective especially in conjunction with estimating equations through which useful data information can be adaptively and flexibly incorporated. It is also known in the literature t hat EL approaches encounter difficulties when dealing with problems having high-dimensional model parameters and estimating equations. To overcome the challenges, we begin our study with a careful investigation on high-dimensional EL from a new scope targeting at estimating a high-dimensional sparse model parameters. We show that the new scope provides an opportunity for relaxing the stringent requirement on the dimensionality of the model parameter. Motivated by the new scope, we then propose a new penalized EL by applying two penalty functions respectively regularizing the model parameters and the associated Lagrange multipliers in the optimizations of EL. By penalizing the Lagrange multiplier to encourage its sparsity, we show that drastic dimension reduction in the number of estimating equations can be effectively achieved without compromising the validity and consistency of the resulting estimators. Most attractively, such a reduction in dimensionality of estimating equations is actually equivalent to a selection among those high-dimensional estimating equations, resulting in a highly parsimonious and effective device for high-dimensional sparse model parameters. Allowing both the dimensionalities of model parameters and estimating equations growing exponentially with the sample size, our theory demonstrates that the estimator from our new penalized EL is sparse and consistent with asymptotically normally distributed nonzero components. Numerical simulations and a real data analysis show that the proposed penalized EL works promisingly.
The James-Stein estimator is an estimator of the multivariate normal mean and dominates the maximum likelihood estimator (MLE) under squared error loss. The original work inspired great interest in developing shrinkage estimators for a variety of pro blems. Nonetheless, research on shrinkage estimation for manifold-valued data is scarce. In this paper, we propose shrinkage estimators for the parameters of the Log-Normal distribution defined on the manifold of $N times N$ symmetric positive-definite matrices. For this manifold, we choose the Log-Euclidean metric as its Riemannian metric since it is easy to compute and is widely used in applications. By using the Log-Euclidean distance in the loss function, we derive a shrinkage estimator in an analytic form and show that it is asymptotically optimal within a large class of estimators including the MLE, which is the sample Frechet mean of the data. We demonstrate the performance of the proposed shrinkage estimator via several simulated data experiments. Furthermore, we apply the shrinkage estimator to perform statistical inference in diffusion magnetic resonance imaging problems.
The plurigaussian model is particularly suited to describe categorical regionalized variables. Starting from a simple principle, the thresh-olding of one or several Gaussian random fields (GRFs) to obtain categories, the plurigaussian model is well a dapted for a wide range ofsituations. By acting on the form of the thresholding rule and/or the threshold values (which can vary along space) and the variograms ofthe underlying GRFs, one can generate many spatial configurations for the categorical variables. One difficulty is to choose variogrammodel for the underlying GRFs. Indeed, these latter are hidden by the truncation and we only observe the simple and cross-variogramsof the category indicators. In this paper, we propose a semiparametric method based on the pairwise likelihood to estimate the empiricalvariogram of the GRFs. It provides an exploratory tool in order to choose a suitable model for each GRF and later to estimate its param-eters. We illustrate the efficiency of the method with a Monte-Carlo simulation study .The method presented in this paper is implemented in the R packageRGeostats.
This paper presents a detailed theoretical analysis of the three stochastic approximation proximal gradient algorithms proposed in our companion paper [49] to set regularization parameters by marginal maximum likelihood estimation. We prove the conve rgence of a more general stochastic approximation scheme that includes the three algorithms of [49] as special cases. This includes asymptotic and non-asymptotic convergence results with natural and easily verifiable conditions, as well as explicit bounds on the convergence rates. Importantly, the theory is also general in that it can be applied to other intractable optimisation problems. A main novelty of the work is that the stochastic gradient estimates of our scheme are constructed from inexact proximal Markov chain Monte Carlo samplers. This allows the use of samplers that scale efficiently to large problems and for which we have precise theoretical guarantees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا