ﻻ يوجد ملخص باللغة العربية
We describe an approach for calculations of phonon contributions to the electron spectral function, including both quasiparticle properties and satellites. The method is based on a cumulant expansion for the retarded one-electron Greens function and a many-pole model for the electron self-energy. The electron-phonon couplings are calculated from the Eliashberg functions, and the phonon density of states is obtained from a Lanczos representation of the phonon Greens function. Our calculations incorporate ab initio dynamical matrices and electron-phonon couplings from the density functional theory code ABINIT. Illustrative results are presented for several elemental metals and for Einstein and Debye models with a range of coupling constants. These are compared with experiment and other theoretical models. Estimates of corrections to Migdals theorem are obtained by comparing with leading order contributions to the self-energy, and are found to be significant only for large electron-phonon couplings at low temperatures.
The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions (EPI) in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing tempera
The interaction of electrons with crystal lattice vibrations (phonons) and collective charge-density fluctuations (plasmons) influences profoundly the spectral properties of solids revealed by photoemission spectroscopy experiments. Photoemission sat
We study the spectral function of the homogeneous electron gas using many-body perturbation theory and the cumulant expansion. We compute the angle-resolved spectral function based on the GW approximation and the `GW plus cumulant approach. In agreem
We examine multiple techniques for extracting information from angle-resolved photoemission spectroscopy (ARPES) data, and test them against simulated spectral functions for electron-phonon coupling. We find that, in the low-coupling regime, it is po
We simulate spectral functions for electron-phonon coupling in a filled band system - far from the asymptotic limit often assumed where the phonon energy is very small compared to the Fermi energy in a parabolic band and the Migdal theorem predicting