ﻻ يوجد ملخص باللغة العربية
We propose a simple method to prove non-smoothness of a black hole horizon. The existence of a $C^1$ extension across the horizon implies that there is no $C^{N + 2}$ extension across the horizon if some components of $N$-th covariant derivative of Riemann tensor diverge at the horizon in the coordinates of the $C^1$ extension. In particular, the divergence of a component of the Riemann tensor at the horizon directly indicates the presence of a curvature singularity. By using this method, we can confirm the existence of a curvature singularity for several cases where the scalar invariants constructed from the Riemann tensor, e.g., the Ricci scalar and the Kretschmann invariant, take finite values at the horizon. As a concrete example of the application, we show that the Kaluza-Klein black holes constructed by Myers have a curvature singularity at the horizon if the spacetime dimension is higher than five.
We investigate the strong gravitational lensing in a Kaluza-Klein black hole with squashed horizons. We find the size of the extra dimension imprints in the radius of the photon sphere, the deflection angle, the angular position and magnification of
We study motions of photons in an unmagnetized cold homogeneous plasma medium in the five-dimensional charged static squashed Kaluza-Klein black hole spacetime. In this case, a photon behaves as a massive particle in a four-dimensional spherically sy
We study the shadow of a rotating squashed Kaluza-Klein (KK) black hole and the shadow is found to possess distinct properties from those of usual rotating black holes. It is shown that the shadow for a rotating squashed KK black hole is heavily infl
We systematically investigate axisymmetric extremal isolated horizons (EIHs) defined by vanishing surface gravity, corresponding to zero temperature. In the first part, using the Newman-Penrose and GHP formalism we derive the most general metric func
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole