ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-channel Electronic and Vibrational Dynamics in Polyatomic High-order Harmonic Generation

306   0   0.0 ( 0 )
 نشر من قبل Baptiste Fabre
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-order harmonic generation in polyatomic molecules generally involves multiple channels, each associated with a different orbital. Their unambiguous assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach, using unaligned SF$_6$ molecules as an example, where we combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Channel-resolved above-threshold ionization measurements reveal that strong-field ionization opens four channels. Two of them, identified by monitoring the ellipticity dependence of the high-harmonic emission, are found to dominate the harmonic signal. A switch from the HOMO-3 to the HOMO-1 channel at 26 eV is confirmed by a phase jump in the harmonic emission, and by the differing dynamical responses to molecular vibrations. This study demonstrates a modus operandi for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected.

قيم البحث

اقرأ أيضاً

High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution, of the order of the angstro m. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such technique to nitrous oxide (N2O) and acetylene (C2H2). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.
High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency $romega$ and $somega$ ($r$ and $s$ are integers), is investigated for a polyatomic molecule. This field pos sesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the $C_{r+s}$ symmetry only the harmonics $n=q(r+s)pm r$, $q=1,2,ldots$, are emitted having the ellipticity $varepsilon_n=pm 1$. We illustrate this using the example of the planar molecules BH$_3$ and BF$_3$, which obey the $C_3$ symmetry. We show that for the BF$_3$ molecule, similarly to atoms with a $p$ ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.
We present an experimental technique using orbital angular momentum (OAM) in a fundamental laser field to drive High Harmonic Generation (HHG). The mixing of beams with different OAM allows to generate two laser foci tightly spaced to study the phase and amplitude of HHG produced in diatomic nitrogen. Nitrogen is used as a well studied system to show the quality of OAM based HHG interferometry.
127 - H. Ruf , C. Handschin , A. Ferre 2012
We study theoretically and experimentally the electronic relaxation of NO2 molecules excited by absorption of one ~400 nm pump photon. Semi-classical simulations based on trajectory surface hopping calculations are performed. They predict fast oscill ations of the electronic character around the intersection of the ground and first excited diabatic states. An experiment based on high-order harmonic transient grating spectroscopy reveals dynamics occuring on the same timescale. A systematic study of the detected transient is conducted to investigate the possible influence of the pump intensity, pump wavelength, and rotational temperature of the molecules. The quantitative agreement between measured and predicted dynamics shows that, in NO2, high harmonic transient grating spectroscopy encodes vibrational dynamics underlying the electronic relaxation.
An all-optical measurement of high-order fractional molecular echoes is demonstrated by using high-order harmonic generation (HHG). Excited by a pair of time-delayed short laser pulses, the signatures of full and high order fractional (1/2 and 1/3) a lignment echoes are observed in the HHG signals measured from CO2 molecules at various time delays of the probe pulse. By increasing the time delay of the pump pulses, much higher order fractional (1/4) alignment echo is also observed in N2O molecules. With an analytic model based on the impulsive approximation, the spatiotemporal dynamics of the echo process are retrieved from the experiment. Compared to the typical molecular alignment revivals, high-order fractional molecular echoes are demonstrated to dephase more rapidly, which will open a new route towards the ultrashort-time measurement. The proposed HHG method paves an efficient way for accessing the high-order fractional echoes in molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا