ترغب بنشر مسار تعليمي؟ اضغط هنا

Isophotal shapes of early-type galaxies to very faint levels

41   0   0.0 ( 0 )
 نشر من قبل Laxmikant Chaware
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laxmikant Chaware




اسأل ChatGPT حول البحث

We report on a study of the isophotal shapes of early-type galaxies, to very faint levels reaching ~ 0.1% of the sky brightness. The galaxies are from the Large Format Camera (LFC) fields obtained using the Palomar 5 m Hale telescope, with integrated exposures ranging from 1 to 4 hours in the SDSS r, i and z bands. The shapes of isophotes of early-type galaxies are important as they are correlated with the physical properties of the galaxies and are influenced by galaxy formation processes. In this paper we report on a sample of 132 E and SO galaxies in one LFC field. We have redshifts for 53 of these, obtained using AAOmega on the Anglo-Australian Telescope. The shapes of early-type galaxies often vary with radius. We derive average values of isophotal shape parameters in four different radial bins along the semi-major axis in each galaxy. We obtain empirical fitting formulae for the probability distribution of the sophotal parameters in each bin and investigate for possible correlations with other global properties of the galaxies. Our main finding is that the isophotal shapes of the inner regions are statistically different from those in the outer regions. This suggests that the outer and inner parts of early-type galaxies have evolved somewhat independently.

قيم البحث

اقرأ أيضاً

X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies using archival $Chandra$ X-ray Observatory observations. Consistent with earlier studies, the scaling relations, $L_X propto T^{4. 5pm0.2}$, $M propto T^{2.4pm0.2}$, and $L_X propto M^{2.8pm0.3}$, are significantly steeper than expected from self similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight $L_X - T$ correlation for low-luminosities systems (i.e., below 10$^{40}$ erg/s) are at variance with hydrodynamical simulations which generally predict higher temperatures for low luminosity galaxies. We also investigate the relationship between total mass and pressure, $Y_X = M_g times T$, finding $M propto Y_{X}^{0.45pm0.04}$. We explore the gas mass to total mass fraction in early-type galaxies and find a range of $0.1-1.0%$. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from $beta$-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.
We analyze $Chandra$ observations of the hot atmospheres of 40 early spiral and elliptical galaxies. Using new temperature, density, cooling time, and mass profiles, we explore relationships between their hot atmospheres and cold molecular gas. Molec ular gas mass correlates with atmospheric gas mass and density over four decades from central galaxies in clusters to normal giant ellipticals and early spirals. The mass and density relations follow power laws: $M_{rm mol} propto M_{rm X}^{1.4pm0.1}$ and $M_{rm mol} propto n_{rm e}^{1.8pm0.3}$, respectively, at 10 kpc. The ratio of molecular gas to atmospheric gas within a 10 kpc radius lies between $3%$ and $10%$ for early-type galaxies and between $3%$ and $50%$ for central galaxies in clusters. Early-type galaxies have detectable levels of molecular gas when their atmospheric cooling times falls below $sim rm Gyr$ at a radius of 10 kpc. A similar trend is found in central cluster galaxies. We find no relationship between the ratio of the cooling time to free fall time, $t_{rm c}/t_{rm ff}$, and the presence or absence of molecular clouds in early-type galaxies. The data are consistent with much of the molecular gas in early-type galaxies having condensed from their hot atmospheres.
We study the spatial distribution of faint satellites of intermediate redshift (0.1<z<0.8), early-type galaxies, selected from the GOODS fields. We combine high resolution HST images and state-of-the-art host subtraction techniques to detect satellit es of unprecedented faintness and proximity to intermediate redshift host galaxies (up to 5.5 magnitudes fainter and as close as 0.5/2.5 kpc to the host centers). We model the spatial distribution of objects near the hosts as a combination of an isotropic, homogenous background/foreground population and a satellite population with a power law radial profile and an elliptical angular distribution. We detect a significant population of satellites, Ns =1.7 (+0.9,-0.8) that is comparable to the number of Milky Way satellites with similar host-satellite contrast.The average projected radial profile of the satellite distribution is isothermal, gamma_p= -1.0(+0.3,-0.4), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining phi to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of phi = 0 and |phi| less than 42 degrees at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.
The late assembly of massive galaxies is thought to be dominated by stellar accretion in their outskirts (beyond 2 effective radii Re) due to dry, minor galaxy mergers. We use observations of 1010 passive early-type galaxies (ETGs) within z<0.15 from SDSS IV MaNGA to search for evidence of this accretion. The outputs from the stellar population fitting codes FIREFLY, pPXF, and Prospector are compared to control for systematic errors in stellar metallicity (Z) estimation. We find that the average radial logZ/Zsun profiles of ETGs in various stellar mass (M) bins are not linear. As a result, these profiles are poorly characterized by a single gradient value, explaining why weak trends reported in previous work can be difficult to interpret. Instead, we examine the full radial extent of stellar metallicity profiles and find them to flatten in the outskirts of M>10^{11}Msun ETGs. This is a signature of stellar accretion. Based on a toy model for stellar metallicity profiles, we infer the ex-situ stellar mass fraction in ETGs as a function of M and galactocentric radius. We find that ex-situ stars at 2Re make up 20% of the projected stellar mass of M<10^{10.5}Msun ETGs, rising up to 80% for M>10^{11.5}Msun ETGs.
We present results of optical broad-band and narrow-band Halpha observations of a sample of forty nearby early-type galaxies. The majority of sample galaxies are known to have dust in various forms viz. dust lanes, nuclear dust and patchy/filamentary dust. A detailed study of dust was performed for 12 galaxies with prominent dust features. The extinction curves for these galaxies run parallel to the Galactic extinction curve, implying that the properties of dust in these galaxies are similar to those of the Milky-Way. The ratio of total to selective extinction (Rv) varies between 2.1 and 3.8, with an average of 2.9 +/- 0.2, fairly close to its canonical value of 3.1 for our Galaxy. The average relative grain size <a>/a_Gal of dust particles in these galaxies turns out to be 1.01 +/- 0.2, while dust mass estimated using optical extinction lies in the range 10^2 to 10^4 M(sun) . The Halpha emission was detected in 23 out of 29 galaxies imaged through narrow- band filters with the Halpha luminosities in the range 10^38 - 10^41 erg s^-1. The mass of the ionized gas is in the range 10^3-10^5 M(sun). The morphology and extent of ionized gas is found similar to those of dust, indicating possible coexistence of dust and ionized gas in these galaxies. The absence of any apparent correlation between blue luminosity and normalized IRAS dust mass is suggestive of merger related origin of dust and gas in these galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا