ﻻ يوجد ملخص باللغة العربية
Crowdsourcing has been proven to be an effective and efficient tool to annotate large datasets. User annotations are often noisy, so methods to combine the annotations to produce reliable estimates of the ground truth are necessary. We claim that considering the existence of clusters of users in this combination step can improve the performance. This is especially important in early stages of crowdsourcing implementations, where the number of annotations is low. At this stage there is not enough information to accurately estimate the bias introduced by each annotator separately, so we have to resort to models that consider the statistical links among them. In addition, finding these clusters is interesting in itself as knowing the behavior of the pool of annotators allows implementing efficient active learning strategies. Based on this, we propose in this paper two new fully unsupervised models based on a Chinese Restaurant Process (CRP) prior and a hierarchical structure that allows inferring these groups jointly with the ground truth and the properties of the users. Efficient inference algorithms based on Gibbs sampling with auxiliary variables are proposed. Finally, we perform experiments, both on synthetic and real databases, to show the advantages of our models over state-of-the-art algorithms.
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferrin
We propose a deep generative factor analysis model with beta process prior that can approximate complex non-factorial distributions over the latent codes. We outline a stochastic EM algorithm for scalable inference in a specific instantiation of this model and present some preliminary results.
In federated learning problems, data is scattered across different servers and exchanging or pooling it is often impractical or prohibited. We develop a Bayesian nonparametric framework for federated learning with neural networks. Each data server is
Many time-to-event studies are complicated by the presence of competing risks. Such data are often analyzed using Cox models for the cause specific hazard function or Fine-Gray models for the subdistribution hazard. In practice regression relationshi
In spatial statistics, it is often assumed that the spatial field of interest is stationary and its covariance has a simple parametric form, but these assumptions are not appropriate in many applications. Given replicate observations of a Gaussian sp