ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital magnetic ratchet effect

113   0   0.0 ( 0 )
 نشر من قبل Leonid E. Golub
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic ratchets -- two-dimensional systems with superimposed non-centrosymmetric ferromagnetic gratings -- are considered theoretically. It is demonstrated that excitation by radiation results in a directed motion of two-dimensional carriers due to pure orbital effect of the periodic magnetic field. Magnetic ratchets based on various two-dimensional systems like topological insulators, graphene and semiconductor heterostructures are investigated. The mechanisms of the electric current generation caused by both radiation-induced heating of carriers and by acceleration in the radiation electric field in the presence of space-oscillating Lorentz force are studied in detail. The electric currents sensitive to the linear polarization plane orientation as well as to the radiation helicity are calculated. It is demonstrated that the frequency dependence of the magnetic ratchet currents is determined by the dominant elastic scattering mechanism of two-dimensional carriers and differs for the systems with linear and parabolic energy dispersions.



قيم البحث

اقرأ أيضاً

We report on the observation of magnetic quantum ratchet effect in metal-oxide-semiconductor field-effect-transistors on silicon surface (Si-MOSFETs). We show that the excitation of an unbiased transistor by ac electric field of terahertz radiation a t normal incidence leads to a direct electric current between the source and drain contacts if the transistor is subjected to an in-plane magnetic field. The current rises linearly with the magnetic field strength and quadratically with the ac electric field amplitude. It depends on the polarization state of the ac field and can be induced by both linearly and circularly polarized radiation. We present the quasi-classical and quantum theories of the observed effect and show that the current originates from the Lorentz force acting upon carriers in asymmetric inversion channels of the transistors.
Ratchet effect -- a {it dc} current induced by the electromagnetic wave impinging on the spatially modulated two-dimensional (2D) electron liquid -- occurs when the wave amplitude is spatially modulated with the same wave vector as the 2D liquid but is shifted in phase. The analysis within the framework of the hydrodynamic model shows that the ratchet current is dramatically enhanced in the vicinity of the plasmonic resonances and has nontrivial polarization dependence. In particular, for circular polarization, the current component, perpendicular to the modulation direction, changes sign with the inversion of the radiation helicity. Remarkably, in the high-mobility structures, this component might be much larger than the the current component in the modulation direction. We also discuss the non-resonant regime realized in dirty systems, where the plasma resonances are suppressed, and demonstrate that the non-resonant ratchet current is controlled by the Maxwell relaxation in the 2D liquid.
Studies of Majorana bound states in semiconducting nanowires frequently neglect the orbital effect of magnetic field. Systematically studying its role leads us to several conclusions for designing Majoranas in this system. Specifically, we show that for experimentally relevant parameter values orbital effect of magnetic field has a stronger impact on the dispersion relation than the Zeeman effect. While Majoranas do not require a presence of only one dispersion subband, we observe that the size of the Majoranas becomes unpractically large, and the band gap unpractically small when more than one subband is filled. Since the orbital effect of magnetic field breaks several symmetries of the Hamiltonian, it leads to the appearance of large regions in parameter space with no band gap whenever the magnetic field is not aligned with the wire axis. The reflection symmetry of the Hamiltonian with respect to the plane perpendicular to the wire axis guarantees that the wire stays gapped in the topologically nontrivial region as long as the field is aligned with the wire.
We report on the observation of magnetic quantum ratchet effect in (Cd,Mn)Te- and CdTe-based quantum well structures with an asymmetric lateral dual grating gate superlattice subjected to an external magnetic field applied normal to the quantum well plane. A dc electric current excited by cw terahertz laser radiation shows 1/B-oscillations with an amplitude much larger as compared to the photocurrent at zero magnetic field. We show that the photocurrent is caused by the combined action of a spatially periodic in-plane potential and the spatially modulated radiation due to the near field effects of light diffraction. Magnitude and direction of the photocurrent are determined by the degree of the lateral asymmetry controlled by the variation of voltages applied to the individual gates. The observed magneto-oscillations with enhanced photocurrent amplitude result from Landau quantization and, for (Cd,Mn)Te at low temperatures, from the exchange enhanced Zeeman splitting in diluted magnetic heterostructures. Theoretical analysis, considering the magnetic quantum ratchet effect in the framework of semiclassical approach, describes quite well the experimental results.
In the past, magnons have been shown to mediate thermal transport of spin in various systems. Here, we reveal that the fundamental coupling of scalar spin chirality, inherent to magnons, to the electronic degrees of freedom in the system can result i n the generation of sizeable orbital magnetization and thermal transport of orbital angular momentum. We demonstrate the emergence of the latter phenomenon of orbital Nernst effect by referring to the spin-wave Hamiltonian of kagome ferromagnets, predicting that in a wide range of systems the transverse current of orbital angular momentum carried by magnons in response to an applied temperature gradient can overshadow the accompanying spin current. We suggest that the discovered effect fundamentally correlates with the topological Hall effect of fluctuating magnets, and it can be utilized in magnonic devices for generating magnonic orbital torques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا