ترغب بنشر مسار تعليمي؟ اضغط هنا

CubeSats as pathfinders for planetary detection: the FIRST-S satellite

90   0   0.0 ( 0 )
 نشر من قبل Sylvestre Lacour
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The idea behind FIRST (Fibered Imager foR a Single Telescope) is to use single-mode fibers to combine multiple apertures in a pupil plane as such as to synthesize a bigger aperture. The advantages with respect to a pure imager are i) relaxed tolerance on the pointing and cophasing, ii) higher accuracy in phase measurement, and iii) availability of compact, precise, and active single-mode optics like Lithium Niobate. The latter point being a huge asset in the context of a space mission. One of the problems of DARWIN or SIM-like projects was the difficulty to find low cost pathfinders missions. But the fact that Lithium Niobate optic is small and compact makes it easy to test through small nanosats missions. Moreover, they are commonly used in the telecom industry, and have already been tested on communication satellites. The idea of the FIRST-S demonstrator is to spatialize a 3U CubeSat with a Lithium Niobate nulling interferometer. The technical challenges of the project are: star tracking, beam combination, and nulling capabilities. The optical baseline of the interferometer would be 30 cm, giving a 2.2 AU spatial resolution at distance of 10 pc. The scientific objective of this mission would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars.



قيم البحث

اقرأ أيضاً

111 - S. Lacour , M. Nowak , P. Bourget 2018
SAGE (SagnAc interferometer for Gravitational wavE) is a fast track project for a space observatory based on multiple 12-U CubeSats in geostationary orbit. The objective of this project is to create a Sagnac interferometer with 73000 km circular arms . The geometry of the interferometer makes it especially sensitive to circularly polarized gravitational waves at frequency close to 1 Hz. The nature of the Sagnac measurement makes it almost insensitive to position error, allowing spacecrafts in ballistic trajectory. The light source and recombination units of the interferometer are based on compact fibered technologies, without the need of an optical bench. The main limitation would come from non-gravitational acceleration of the spacecraft. However, conditionally upon our ability to post-process the effect of solar wind, solar pressure and thermal expansion, we would detect gravitational waves with strains down to 10^-21 over a few days of observation.
CubeSats have the potential to expand astrophysical discovery space, complementing ground-based electromagnetic and gravitational-wave observatories. The CubeSat design specifications help streamline delivery of instrument payloads to space. CubeSat planners have more options for tailoring orbits to fit observational needs and may have more flexibility in rapidly rescheduling observations to respond to transients. With over 1000 CubeSats launched, there has been a corresponding increase in the availability and performance of commercial-off-the-shelf (COTS) components compatible with the CubeSat standards, from solar panels and power systems to reaction wheels for three axis stabilization and precision attitude control. Commercially available components can reduce cost CubeSat missions, allowing more resources to be directed toward scientific instrument payload development and technology demonstrations.
The NEAT (Nearby Earth Astrometric Telescope) mission is a proposal submitted to ESA for its 2010 call for M-size mission within the Cosmic Vision 2015-2025 plan. The main scientific goal of the NEAT mission is to detect and characterize planetary sy stems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets.
64 - Norbert Werner 2018
We propose a fleet of nanosatellites to perform an all-sky monitoring and timing based localisation of gamma-ray transients. The fleet of at least nine 3U cubesats shall be equipped with large and thin CsI(Tl) scintillator based soft gamma-ray detect ors read out by multi-pixel photon counters. For bright short gamma-ray bursts (GRBs), by cross-correlating their light curves, the fleet shall be able to determine the time difference of the arriving GRB signal between the satellites and thus determine the source position with an accuracy of $sim10^prime$. This requirement demands precise time synchronization and accurate time stamping of the detected gamma-ray photons, which will be achieved by using on-board GPS receivers. Rapid follow up observations at other wavelengths require the capability for fast, nearly simultaneous downlink of data using a global inter-satellite communication network. In terms of all-sky coverage, the proposed fleet will outperform all GRB monitoring missions.
145 - Bryan M. Gaensler 2009
One of the five key science projects for the Square Kilometre Array (SKA) is The Origin and Evolution of Cosmic Magnetism, in which radio polarimetry will be used to reveal what cosmic magnets look like and what role they have played in the evolving Universe. Many of the SKA prototypes now being built are also targeting magnetic fields and polarimetry as key science areas. Here I review the prospects for innovative new polarimetry and Faraday rotation experiments with forthcoming facilities such as ASKAP, LOFAR, the ATA, the EVLA, and ultimately the SKA. Sensitive wide-field polarisation surveys with these telescopes will provide a dramatic new view of magnetic fields in the Milky Way, in nearby galaxies and clusters, and in the high-redshift Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا