ﻻ يوجد ملخص باللغة العربية
Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting model with a single solvent-independent parameter: the electron density threshold ($n_c$), and a single solvent-dependent parameter: the dispersion scale factor ($s_6$), reproduces solvation energies of organic molecules in water, chloroform and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol respectively. We additionally show that fitting the solvent-dependent $s_6$ parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.
Continuum models to handle solvent and electrolyte effects in an effective way have a long tradition in quantum-chemistry simulations and are nowadays also being introduced in computational condensed-matter and materials simulations. A key ingredient
Recent studies of the hydration of micro- and nanoscale solutes have demonstrated a strong {it coupling} between hydrophobic, dispersion and electrostatic contributions, a fact not accounted for in current implicit solvent models. We present a theore
In this work, a systematic protocol is proposed to automatically parametrize implicit solvent models with polar and nonpolar components. The proposed protocol utilizes the classical Poisson model or the Kohn-Sham density functional theory (KSDFT) bas
We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics in numerous polar solvents, and ion solvation free energies in water--co-solvent mixtu
Continuum solvation models enable electronic structure calculations of systems in liquid environments, but because of the large number of empirical parameters, they are limited to the class of systems in their fit set (typically organic molecules). H