ترغب بنشر مسار تعليمي؟ اضغط هنا

There Exist Non-CM Hilbert Modular Forms of Partial Weight 1

140   0   0.0 ( 0 )
 نشر من قبل Richard Moy
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we prove that there exists a classical Hilbert modular cusp form over Q(sqrt{5}) of partial weight one which does not arise from the induction of a Grossencharacter from a CM extension of Q(sqrt{5}).



قيم البحث

اقرأ أيضاً

192 - Yichao Zhang 2017
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for the Weil representation associated to the discriminant form for the lattice with Gram matrix $(2)$. With such an isomorphism, we prove the Zagier duality and write down the Borcherds lifts explicitly.
91 - Rufei Ren , Bin Zhao 2020
Let $F$ be a totally real field and $p$ be an odd prime which splits completely in $F$. We prove that the eigenvariety associated to a definite quaternion algebra over $F$ satisfies the following property: over a boundary annulus of the weight space, the eigenvariety is a disjoint union of countably infinitely many connected components which are finite over the weight space; on each fixed connected component, the ratios between the $U_mathfrak{p}$-slopes of points and the $p$-adic valuations of the $mathfrak{p}$-parameters are bounded by explicit numbers, for all primes $mathfrak{p}$ of $F$ over $p$. Applying Hansens $p$-adic interpolation theorem, we are able to transfer our results to Hilbert modular eigenvarieties. In particular, we prove that on every irreducible component of Hilbert modular eigenvarieties, as a point moves towards the boundary, its $U_p$ slope goes to zero. In the case of eigencurves, this completes the proof of Coleman-Mazurs `halo conjecture.
229 - Kirti Joshi , Yichao Zhang 2015
We prove that amongst all real quadratic fields and all spaces of Hilbert modular forms of full level and of weight $2$ or greater, the product of two Hecke eigenforms is not a Hecke eigenform except for finitely many real quadratic fields and finite ly many weights. We show that for $mathbb Q(sqrt 5)$ there are exactly two such identities.
193 - YoungJu Choie 2021
Generalizing a result of cite{Z1991, CPZ} about elliptic modular forms, we give a closed formula for the sum of all Hilbert Hecke eigenforms over a totally real number field with strict class number $1$, multiplied by their period polynomials, as a single product of the Kronecker series.
We introduce Galois families of modular forms. They are a new kind of family coming from Galois representations of the absolute Galois groups of rational function fields over the rational field. We exhibit some examples and provide an infinite Galois family of non-liftable weight one Katz modular eigenforms over an algebraic closure of F_p for p in {3,5,7,11}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا