ترغب بنشر مسار تعليمي؟ اضغط هنا

Two approaches to obtain the strong converse exponent of quantum hypothesis testing for general sequences of quantum states

150   0   0.0 ( 0 )
 نشر من قبل Mil\\'an Mosonyi
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two general approaches to obtain the strong converse rate of quantum hypothesis testing for correlated quantum states. One approach requires that the states satisfy a certain factorization property; typical examples of such states are the temperature states of translation-invariant finite-range interactions on a spin chain. The other approach requires the differentiability of a regularized Renyi $alpha$-divergence in the parameter $alpha$; typical examples of such states include temperature states of non-interacting fermionic lattice systems, and classical irreducible Markov chains. In all cases, we get that the strong converse exponent is equal to the Hoeffding anti-divergence, which in turn is obtained from the regularized Renyi divergences of the two states.



قيم البحث

اقرأ أيضاً

There are different inequivalent ways to define the Renyi capacity of a channel for a fixed input distribution $P$. In a 1995 paper Csiszar has shown that for classical discrete memoryless channels there is a distinguished such quantity that has an o perational interpretation as a generalized cutoff rate for constant composition channel coding. We show that the analogous notion of Renyi capacity, defined in terms of the sandwiched quantum Renyi divergences, has the same operational interpretation in the strong converse problem of classical-quantum channel coding. Denoting the constant composition strong converse exponent for a memoryless classical-quantum channel $W$ with composition $P$ and rate $R$ as $sc(W,R,P)$, our main result is that [ sc(W,R,P)=sup_{alpha>1}frac{alpha-1}{alpha}left[R-chi_{alpha}^*(W,P)right], ] where $chi_{alpha}^*(W,P)$ is the $P$-weighted sandwiched Renyi divergence radius of the image of the channel.
We consider sequential hypothesis testing between two quantum states using adaptive and non-adaptive strategies. In this setting, samples of an unknown state are requested sequentially and a decision to either continue or to accept one of the two hyp otheses is made after each test. Under the constraint that the number of samples is bounded, either in expectation or with high probability, we exhibit adaptive strategies that minimize both types of misidentification errors. Namely, we show that these errors decrease exponentially (in the stopping time) with decay rates given by the measured relative entropies between the two states. Moreover, if we allow joint measurements on multiple samples, the rates are increased to the respective quantum relative entropies. We also fully characterize the achievable error exponents for non-adaptive strategies and provide numerical evidence showing that adaptive measurements are necessary to achieve our bounds under some additional assumptions.
We show that the new quantum extension of Renyis alpha-relative entropies, introduced recently by Muller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013), and Wilde, Winter, Yang, Commun. Math. Phys. 331, (2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Renyi relative entropies depends on the parameter alpha: for alpha<1, the right choice seems to be the traditional definition, whereas for alpha>1 the right choice is the newly introduced version. As a sideresult, we show that the new Renyi alpha-relative entropies are asymptotically attainable by measurements for alpha>1, and give a new simple proof for their monotonicity under completely positive trace-preserving maps.
285 - M. A. Yurischev 2015
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analyti cal forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا