ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in Noncentrosymmetric Iridium Silicide Li2IrSi3

85   0   0.0 ( 0 )
 نشر من قبل Kazutaka Kudo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of lithium absorption on the crystal structure and electronic properties of IrSi3, a binary silicide with a noncentrosymmetric crystal structure, were studied. X-ray and neutron diffraction experiments revealed that hexagonal IrSi3 (space group P6_3mc) transforms into trigonal Li2IrSi3 (space group P31c) upon lithium absorption. The structure of Li2IrSi3 is found to consist of a planar kagome network of silicon atoms with Li and Ir spaced at unequal distances between the kagome layers, resulting in a polar structure along the c-axis. Li2IrSi3 exhibited type-II superconductivity with a transition temperature Tc of 3.8 K, displaying a structure type that no previous superconductors have been reported to have.

قيم البحث

اقرأ أيضاً

Here we report the synthesis and discovery of superconductivity in a novel ternary iridium-arsenide compound BaIr2As2. The polycrystalline BaIr2As2 sample was synthesized by a high temperature and high pressure method. Crystal structural analysis ind icates that BaIr2As2 crystallizes in the ThCr2Si2-type layered tetragonal structure with space group I4/mmm (No. 139), and the lattice parameters were refined to be a = 4.052(9) {AA} and c = 12.787(8) {AA}. By the electrical resistivity and magnetic susceptibility measurements we found type-II superconductivity in the new BaIr2As2 compound with a Tc (critical temperature) of 2.45 K, and an upper critical field u0Hc2(0) about 0.2 T. Low temperature specific heat measurements gave a Debye temperature about 202 K and a distinct specific jump with delta Ce/{gamma}Tc = 1.36, which is close to the value of BCS weak coupling limit and confirms the bulk superconductivity in this new BaIr2As2 compound.
160 - L. Jiao , J. L. Zhang , Y. Chen 2014
We report measurements of London penetration depth $lambda(T)$ for the noncentrosymmetric superconductor BiPd by using a tunnel diode oscillator. Pronounced anisotropic behavior is observed in the low-temperature penetration depth; the in-plane penet ration depth $lambda_{ac}(T)$ follows an exponential decrease, but the interplane penetration depth $lambda_b(T)$ shows power-law-type behavior. The superfluid density $rho_s(T)$, converted from the penetration depth $lambda(T)$, is best fitted by an anisotropic two-band BCS model. We argue that such a complex order parameter is attributed to the admixture of spin-singlet and spin-triplet pairing states as a result of antisymmetric spin-orbit coupling in BiPd.
Single crystals of NbGe$_{2}$ which crystallize in a noncentrosymmetric hexagonal structure with chirality are synthesized and their superconductivity is investigated. Type-I superconductivity is confirmed by dc magnetization, field-induced second-to first-order phase transition in specific heat, and a small Ginzburg-Landau parameter $kappa_{GL}=0.12$. The isothermal magnetization measurements show that there is a crossover from type-I to type-II/1 superconductivity with decreasing temperature and an unusually enhanced surface superconducting critical field ($H_{c3}$) is discovered. The band structure calculations indicate the presence of Kramer-Weyl nodes near the Fermi level. These observations demonstrate that NbGe$_{2}$ is an interesting and rare example involving the possible interplay of type-I superconductivity, noncentrosymmetric structure and topological properties.
We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were id entified as the orthorhombic Co2P-type o-ScRuSi by the powder X-ray diffraction analysis. Electrical resistivity measurement shows o-ScRuSi to be a metal which superconducts below a Tc of 3.1 K, and the upper critical field {mu}0Hc2(0) is estimated to be 0.87 T. The magnetization and specific heat measurements confirm the bulk type-II superconductivity in o-ScRuSi, with the specific heat jump within the BCS weak coupling limit. o-ScRuSi is the first Co2P-type superconductor containing scandium. After annealing at 1273 K for a week, o-ScRuSi transforms into the hexagonal Fe2P-type h-ScRuSi, and the latter is a Pauli-paramagnetic metal with no superconductivity observed above 1.8 K.
Polycrystalline sample of superconducting ThIr$_{3}$ was obtained by arc-melting Th and Ir metals. Powder x-ray diffraction revealed that the compound crystalizes in a rhombohedral crystal structure (R-3m, s.g. no. 166) with the lattice parameters: a = 5.3394(1) $r{A}$ and c = 26.4228(8) $r{A}$. Normal and superconducting states were studied by magnetic susceptibility, electrical resistivity and heat capacity measurements. The results showed that ThIr$_{3}$ is a type II superconductor (Ginzburg-Landau parameter $kappa$ = 38) with the critical temperature T$_{c}$ = 4.41 K. The heat capacity data yielded the Sommerfeld coefficient $gamma$ = 17.6 mJ mol$^{-1}$ K$^{-2}$ and the Debye temperature $Theta_{D}$ = 169 K. The ratio $Delta$C / ($gamma$ T$_{c}$) = 1.6, where $Delta$C stands for the specific heat jump at T$_{c}$, and the electron-phonon coupling constant $lambda_{e-p}$ = 0.74 suggest that ThIr$_{3}$ is a moderate-strength superconductor. The experimental studies were supplemented by band structure calculations, which indicated that the superconductivity in ThIr$_{3}$ is governed mainly by 5d states of iridium. The significantly smaller band-structure value of Sommerfeld coefficient as well as the experimentally observed quadratic temperature dependence of resistivity and enhanced magnetic susceptibility suggest presence of electronic interactions in the system, which compete with superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا