ﻻ يوجد ملخص باللغة العربية
We use NMR techniques to investigate the magnetic properties of BaCo2As2 single crystals, the non-superconducting end member of the Co-substituted iron-pnictide high Tc superconductor Ba(Fe1-xCox)2As2 with x = 1. We present 75As NMR evidence for enhancement of low frequency spin fluctuations below ~ 100 K. This enhancement is accompanied by that of static uniform spin susceptibility at the wave vector q = 0, suggesting that the primary channel of the spin correlations is ferromagnetic rather than antiferromagnetic. Comparison between the NMR Knight shift 75K and bulk susceptibility chi(bulk) data uncovers the presence of two separate components of spin susceptibility with distinct temperature dependences, presumably because multiple electronic bands crossing the Fermi energy play different roles in the electronic properties of BaCo2As2.
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic (AFM) and in-plane ferromagnetic (FM) wavevectors. However, the possib
The anisotropy of the nuclear spin-lattice relaxation rate $1/T_{1}$ of $^{75}$As was investigated in the iron-based superconductor LaFeAs(O$_{1-x}$F$_{x}$) ($x = 0.07, 0.11$ and 0.14) as well as LaFeAsO. While the temperature dependence of the norma
We report 19-F NMR investigation of the new high temperature superconductor LaFeAsO(0.89)F(0.11) (Tc ~ 28K). We demonstrate that low frequency spin fluctuations exhibit pseudo gap behavior above Tc. We also deduce the London penetration depth lambda from NMR line broadening below Tc.
We will probe the intrinsic behavior of spin susceptibility chi_(spin) in the LaFeAsO(1-x)F(x) superconductor (x ~ 0.1, Tc ~ 27K) using 19-F and 75-As NMR techniques. Our new results firmly establish the pseudo-gap behavior with Delta_(PG)/kB ~ 140K.
We investigate the nature of the SDW (Spin Density Wave) transition in the underdoped regime of an iron-based high Tc superconductor Ba(Fe1-xCox)2As2 by 75As NMR, with primary focus on a composition with x = 0.02 (T_SDW = 99 K).We demonstrate that cr