ﻻ يوجد ملخص باللغة العربية
Recognizing fonts has become an important task in document analysis, due to the increasing number of available digital documents in different fonts and emphases. A generic font-recognition system independent of language, script and content is desirable for processing various types of documents. At the same time, categorizing calligraphy styles in handwritten manuscripts is important for palaeographic analysis, but has not been studied sufficiently in the literature. We address the font-recognition problem as analysis and categorization of textures. We extract features using complex wavelet transform and use support vector machines for classification. Extensive experimental evaluations on different datasets in four languages and comparisons with state-of-the-art studies show that our proposed method achieves higher recognition accuracy while being computationally simpler. Furthermore, on a new dataset generated from Ottoman manuscripts, we show that the proposed method can also be used for categorizing Ottoman calligraphy with high accuracy.
Submission withdrawn because the authors erroneously submitted a revised version as a new submission, see nlin.CD/0002028.
In the present paper we have reported a wavelet based time-frequency multiresolution analysis of an ECG signal. The ECG (electrocardiogram), which records hearts electrical activity, is able to provide with useful information about the type of Cardia
Unsupervised deep learning has recently demonstrated the promise to produce high-quality samples. While it has tremendous potential to promote the image colorization task, the performance is limited owing to the manifold hypothesis in machine learnin
Recently, multidimensional data is produced in various domains; because a large volume of this data is often used in complex analytical tasks, it must be stored compactly and able to respond quickly to queries. Existing compression schemes well reduc
We propose a 2D generalization to the $M$-band case of the dual-tree decomposition structure (initially proposed by N. Kingsbury and further investigated by I. Selesnick) based on a Hilbert pair of wavelets. We particularly address (textit{i}) the co