ﻻ يوجد ملخص باللغة العربية
The research presented here uses QCD sum rules (QSR) to study exotic hadrons. There are several themes in this work. First is the use of QSR to predict the masses of exotic hadrons that may exist among the heavy quarkonium-like states. The second theme is the application of sophisticated loop integration methods in order to obtain more complete theoretical results. These in turn can be extended to higher orders in the perturbative expansion in order to predict the properties of exotic hadrons more accurately. The third theme involves developing a renormalization methodology for these higher order calculations. This research has implications for the $Y(3940)$, $X(3872)$, $Z_c^pmleft(3895right)$, $Y_bleft(10890right)$, $Z_b^{pm}(10610)$ and $Z_b^{pm}(10650)$ particles, thereby contributing to the ongoing effort to understand these and other heavy quarkonium-like states.
We have studied the charmonium and bottomonium hybrid states with various $J^{PC}$ quantum numbers in QCD sum rules. At leading order in $alpha_s$, the two-point correlation functions have been calculated up to dimension six including the tri-gluon c
The in-medium masses of the bottomonium ground states [$1S$ ($Upsilon (1S), eta_b$) and $1P$ ($chi_{b0},chi_{b1}$)] are investigated in the magnetized vacuum (nuclear medium), using the QCD sum rule framework. In QCD sum rule approach, the mass modif
We use QCD Laplace sum-rules to explore mixing between conventional mesons and hybrids in the heavy quarkonium vector $J^{PC}!=!1^{--}$ channel. Our cross-correlator includes perturbation theory and contributions proportional to the four-dimensional
QCD Laplace sum rules are used to calculate heavy quarkonium (charmonium and bottomonium) hybrid masses in several distinct $J^{PC}$ channels. Previous studies of heavy quarkonium hybrids did not include the effects of dimension-six condensates, lead
We use QCD Laplace sum-rules to study meson-hybrid mixing in vector ($1^{--}$) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leadin