ﻻ يوجد ملخص باللغة العربية
We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalogue of 922 globular cluster line-of- sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. 263 globular clusters, mainly located beyond 40 kpc, are newly observed by the Next Generation Virgo Survey (NGVS). For the M2M modelling, the gravitational potential is taken as a combination of a luminous matter potential with a constant stellar mass-to-light ratio and a dark matter potential modelled as a logarithmic potential. Our best dynamical model returns a stellar mass-to-light ratio in the I band of M/LI = 6.0(+ -0.3) M_sun/L_sun with a dark matter potential scale velocity of 591(+ -50) km/s and scale radius of 42(+ -10) kpc. We determine the total mass of M87 within 180 kpc to be (1.5 + - 0.2) 10^13 M_sun. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond 45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derived is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy beta parameter for the globular clusters in M87 is small, varying from -0.2 at the centre to 0.2 at 40 kpc, and gradually decreasing to zero at 120 kpc.
The origin of ultra-compact dwarfs (UCDs)--objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies--has been hotly debated in the 15 years since their discovery. Even whether UCDs should be c
We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey, a large imaging survey covering Virgos primary subclusters to their viria
We use imaging from the Next Generation Virgo cluster Survey (NGVS) to present a comparative study of ultra-compact dwarf (UCD) galaxies associated with three prominent Virgo sub-clusters: those centered on the massive, red-sequence galaxies M87, M49
We present a study of ultra compact dwarf (UCD) galaxies in the Virgo cluster based mainly on imaging from the Next Generation Virgo Cluster Survey (NGVS). Using $sim$100 deg$^{2}$ of $u^*giz$ imaging, we have identified more than 600 candidate UCDs,
We build a background cluster candidate catalog from the Next Generation Virgo Cluster Survey, using our detection algorithm RedGOLD. The NGVS covers 104$deg^2$ of the Virgo cluster in the $u^*,g,r,i,z$-bandpasses to a depth of $ g sim 25.7$~mag (5$s